Personal tools
 

Converse of Schur's Lemma

— filed under:

Marina Dombrovskaya, SLU

What
  • Algebra Seminar
When Thu, Mar 29, 2007
from 02:10 PM to 03:00 PM
Where RH 222
Add event to calendar vCal
iCal

Schur's Lemma is one of the fundamental results of the theory of simple modules. It states that if M is a simple right module over a ring R, then its endomorphism ring is a division ring. However, the converse of Schur's Lemma is, in general, not true for either commutative or noncommutative rings. Nevertheless, the converse of Schur's Lemma does hold for certain kinds of rings. We will describe some of those rings in both the commutative and the noncommutative cases.

« February 2018 »
February
SuMoTuWeThFrSa
123
45678910
11121314151617
18192021222324
25262728