1. Prove that if \(n \) is a positive integer, then \(n \) is even if and only if \(7n + 4 \) is even.

2. Prove that if \(m \) and \(n \) are integers and \(mn \) is even, then \(m \) is even or \(n \) is even.

3. Prove or disprove that the product of a (nonzero) rational number and an irrational number is irrational.

4. Prove that the square of an integer ends with 0, 1, 4, 5, 6, or 9. (Hint: Let \(n = 10^k + l \) where \(k = 0, 1, 2, \ldots, 9 \)).

5. (a) Prove that \(3^n < n! \) if \(n \) is an integer greater than 6.

 (b) Prove that \(n! < n^n \) if \(n \geq 1 \)

6. Prove that \(\sum_{i=1}^{n} i \cdot i! = (n + 1)! - 1 \) whenever \(n \) is a positive integer. (Recall that \(\sum_{i=1}^{n} i = \frac{n \cdot (n + 1)}{2} \).

7. Assume that a chocolate bar consists of \(n \) squares arranged in a rectangular pattern. The bar can only be broken along vertical or horizontal lines separating the squares. (Think of a Hershey’s bar.)

 Assuming that only one piece can be broken at a time, determine how many breaks you must make in order to break the bar into \(n \) squares. Use induction to prove your answer is correct.