Announcements

- Posted review session info & worksheet

- Final exam next Monday at (10? noon?)
Shortest paths in a graph. (Ch 12)

Suppose we have \(G = (V, E) \) and each edge \(e \in E \) has a length \(l_e \).

Here, we'll assume \(G \) is directed: \(u \rightarrow v \).

Goal: Given two vertices, find shortest path between them.
We'll actually do something harder:

Given a source vertex s, compute shortest path from s to every other vertex.

Greedy idea:

Start with a set S. (Initially $S = \{s\}$)

At each step, grow out from S, taking next shortest path from S to a new vertex and adding that to S. (shortest path tree)

set of vertices where I "know" the shortest path to s
Greedy idea:
Start with source (here, St. Louis)
Let $S = \{s\}$
Consider edges going out from S.

At each step, grow out from S taking next shortest path from S to a new vertex v and adding that to S.
Pseudo code: Dijkstra's algorithm

(actually Leyzorek, Gray, Johnson, Ladew, Meeker, Petry + Sell)

\[SPtree(G, s) : \]
\[S \leftarrow \{s\} \]
\[D[s] \leftarrow 0 \]
\[T \leftarrow \emptyset \]

← distance array, initialized to \(\infty\)

while \(S \neq V\) do
 select node \(v\) with at least one edge into \(S\) where \(d'(v) = \min_{(u,v) \in E, u \in S} D[u] + \ell_{uv}\) is minimized
 \[S \leftarrow S \cup \{v\} \]
 \[D[v] \leftarrow d'(v) \]
 \[T \leftarrow T \cup \{(u,v)\} \]
Claim: At each stage, T is a set of shortest paths from s to S.

pf: induction on $|S|$

(go take 314)
Improved Pseudo code

\[\text{Dijkstra}(G, s) : \]

Create array \(D[v] \), initially all \(\infty \)

\[S \leftarrow \{s\} \]

\[D[s] \leftarrow 0 \]

for every edge \((s, u)\)

set \(D[u] \leftarrow d_{su} \)

While \(S \neq V \)

select node \(v \in S \) with \(D[v] \) minimized

\[S \leftarrow S \cup \{v\} \]

for each edge \((v, u)\)

if \(D[v] + d_{uv} < D[u] \)

\[D[u] \leftarrow D[v] + d_{uv} \]

\(\text{O}(\log n) \)

\(\text{O}(\log n) \)
Runtime

\[\leq d(v) \text{ times for each vertex's value } D[v] \text{ to be modified} \]
\[O(\log n) \text{ time each time} \]

\[\sum_{v \in V} d(v) \log n = \log n \sum_{v \in V} d(v) \]

\[\approx O(m \log n) = (\log n)^{2m} \]