Announcements

- Program 5 due tomorrow
- HW3 up today/tomorrow
Last time: Trees

Def: A tree T is a set of nodes storing elements in a parent-child relationship.

T has a special node r, called the root.
Each node (except r) has a unique parent.
More dfs

- child
- siblings: share common parent
- leaves: vertices with no children
- internal nodes: not leaves
- rooted subtree
- descendant/ancestor
Binary Tree

- Every node has \(\leq 2 \) children.

- left 2 pointers
 - right

code for this will be written next week
Nice trick

Can be pointers or array based!

left(x) = 2x + 1
right(x) = 2x + 1
Depth + Height - defined recursively

depth: \(\text{depth}(r) = 0 \)

\(\text{depth}(v) = \text{depth}(\text{parent}(v)) + 1 \)

\(\text{depth}(\text{tree}) = \text{max} \ \text{depth} \)

height: \(\text{height}(\text{leaf}) = 0 \)

\(\text{height}(v) = \text{max}(\text{height of children}) + 1 \)

\(\text{height}(\text{tree}) = \text{height}(r) \)

\(\text{height}(T) = \text{depth}(T) \)

\(\text{height}(v) \neq \text{depth}(v) \)
Data Structures (for trees)

Priority Queue: supports the following operations

\(\text{push} \)

- \(\text{insert}(e) \): adds element \(e \) to the data structure \(\Theta(n) \)

\(\text{pop} \)

- \(\text{removeMax()} \): removes maximum element
- \(\text{getMax()} \): returns maximum element (size, empty)

How to build?

Use lists or vectors & sort (something will take \(\Theta(n) \) time)
Heaps

A binary tree where:

- For every node \(v \) (other than root), the key stored at \(v \) is \(\leq \) key stored at \(v \)'s parent.

- The tree is complete: levels 0 to \(h-1 \) are full, and level \(h \) is filled in left to right order.
Max Heap

return this for getMax

know is ≥ children
Insert:

insert (11)

insert (52)

"bubbling up"
Insert: 6, 10, 2, 12, 60, 1
Remove Max "bubble down"
Running times

How many comparisons/sweeps?

$O(n)$ (or $O(d)$)

Total $O(\log_2 n)$ for any operation

Versus $O(1)$ or $O(n)$
Binary Search Trees