CS180 - Shortest Path Algorithms
Other graph algorithms
- BFS returns a "short" S-t path, in some sense.

But won't work if graph has weights on the edges.

Why?

Which s-t path will be in BFS tree?

But shortest
Weighted Graphs

Formally, a weighted graph is a graph $G = (V, E)$ along with a function $w: E \rightarrow \mathbb{R}$ which gives each edge a weight $w(e)$.

The length of a path is the sum of the weights of the edges.

The distance $d(u, v)$ is the length of a minimum weight path.
Problem:
Given a weighted graph G and a vertex v, compute the shortest paths from v to every other vertex.

How?
Dijkstra's Algorithm

Essentially, a “weighted” BFS.

We'll keep a set of vertices whose shortest path is known.

Want to add in the next closest vertex.

Key idea: This must give the shortest path to that vertex.
Details

Assume \(G \) is undirected and has no negative edges.

Why?

What is the shortest path from \(s \) to \(t \)?

No shortest path.
Edge relaxation

Key operation:
Suppose $D[u]$ holds current best path from s to u (so far).
(Initially, $D[s] = 0$ & $D[u] = \infty$ for all u's.)

Need to update D label's via relaxation:
Say we update $D[u]$.
For each edge (u, v),
if $D[u] + w(v, u) > D[v] + w(y, u)$:
$D[u] = D[v] + w(y, u)$

C better (new) path
So at each phase, let S be set of "known" distances $D[u]$. Relax all neighbors of vertices in S.

After wards, can add the minimum of all the neighbors to S.
Algorithm: Given \(G + s \):

1. Initialize \(D[s] = 0 \)
2. For all \(u \neq s \), set \(D[u] = \infty \)
3. Create a heap \(H \) and add \((D[s], s) \) to \(H \)

While \(H \) is not empty

1. \(u = H . \text{removeMin}(H) \)
2. For each neighbor \(v \) of \(u \)
3. \(\text{relax edge} \) \(v \)
4. If \(D[u] + w(u, v) < D[v] \)
 - \(D[v] = D[u] + w(u, v) \)
 - Add new \((D[v], v) \) to \(H \)
updateKey $O(\log n)$
Four phases of Dijkstra’s algorithm run on a graph with no negative edges. At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned. The bold edges describe the evolving shortest path tree.
Running Time

- remove Min: \(O(\log n) \) repeated at most \(n \) times
- relaxation of each adjacent edge:

Note: Need an adaptable priority queue, where priorities can be updated in \(O(\log n) \) time

Total:

\[
\sum_{v \in V} (1 + d(v)) \log n
\]

\[
= \sum_{v \in V} \log n + \sum_{v \in V} d(v) \cdot \log n = O(n \log n + m \log n)
\]
Another question:

Given G, find a tree with containing every vertex with minimum total weight.

Uses?

Goal: Connect everybody while paying some minimum amount.
This is called the **minimum spanning tree** of 6.

Note: Not the same as shortest path tree.
Next time:

How to compute MST.