CS314 - Greedy Scheduling

- HW (written) due in 1 week
Strategy for greedy algorithms:

1. Figure out a greedy strategy.
 Proof:
2. Assume optimal solution is different from the greedy solution.
 * Find the "first" place they differ.
 * Argue that we can exchange the two without making optimal any worse

⇒ there is no "first place" they differ, so greedy is optimal.
Setting:

- A single resource (i.e., a processor)
- Input: \(n \) requests, each with
 \(D_1, \ldots, D_n \) deadline \(D[i] \) by which
 time request \(i \) must be
 completed
 \(T[1..n] \) – length of time \(T[i] \)
 which request \(i \) will take.

Goal: Run everything, and minimize how
late things are.

Here: minimize the largest “lateness”
Lateness: Given a finish time F_i, the lateness is defined as:

$$L_i = F_i - D_i$$

Goal: Minimize $\max_i L_i$.
Ex: Job 1: \[\text{length 1} \quad \text{deadline} = 2\]

Job 2: \[\text{length 2} \quad \text{deadline} = 4\]

Job 3: \[\text{length 3} \quad \text{deadline} = 6\]

Input: \[
\frac{D}{T} = \frac{1}{1} + \frac{3}{3} + \frac{6}{6} = 6
\]

Schedule: \[
\text{1} \quad \text{2} \quad \text{3}
\]

\[\text{lateness} = 0\]
Idea for how to be greedy?

* earliest deadline first
 maybe?

* shortest job first

* "slack"—take smallest \(D[j] - T[i] \)

\[
\begin{array}{c}
1 & 2 \\
\hline
2 & 14 \\
5 & 16
\end{array}
\]
Earliest deadline first (EDF)
Sort by $D[i]$, & schedule in this order.

(Hard to believe this works - that's why the proof is key)

First: run time?

$O(n \log n)$
Proof of correctness:

First, note we can assume no idle time. Why?

If I reschedule to eliminate idle time, max "lateness" only can decrease.
Definition: Two jobs are inverted if job i goes before job j but: $D[i] > D[j]$

(Note: Our schedule has no inversions.)

Key: All schedules with no inversions and no idle time have same max lateness.

Proof: Only difference between 2 such schedules is jobs with same deadline. Swapping these won't change lateness.
Thm: There is an optimal schedule with no inversions.

pf: Suppose opt has inversions.
Then \(D[a] > D[b] \) but:

OPT:

Find adjacent inversion: look at c's nbr c. If inversion w/a, done.
So assume not: \(D[c] > D[a] \).
Know c is also inverted with b.
Goal: If we swap i and j, gets no worse.

Concern: did i get worse?

Swap:

- i's finish time goes down
- $F[j]$ is j's new finish
What if job i's lateness increased?

After swap, i finishes at $F[j]$ from OPT.

New lateness for i: $F[j] - D[i]$

But j's lateness in OPT was:

(before swap)

$F[j] - D[i] \leq F[j] - D[j] \leq \text{max lateness}$

So swap could not have made maximum lateness worse.
Finally: How many inversions can there be?