CS314 - NP-Hardness
“Efficiency"

Fundamental question: Are there hard problems? How hard—unsolvable? polynomial?
Undecidability.

Some problems can not be solved:

Halting Problem: Given a program P and input I, does P halt given input I or does it run forever?

Output: true or false

Why useful?
Note: Our program can't just simulate and running on I.

Why? If we simulate P on I and it runs forever, we don't actually output.
Thm. [Turing '36]: The halting problem is undecidable.

(That is, no such algorithm can exist.)

Proof: (by contradiction)
Suppose we have such a program \(h \):
\[
 h(P, I) =
 \begin{cases}
 1 & \text{if } P \text{ halts on } I \\
 0 & \text{otherwise}
 \end{cases}
\]
Now define another program:

\[g(i) : \]
\[
\text{if } h(i, i) = 0 \\
\text{return } 0 \\
\text{else loop forever}
\]

try \(g(g) \rightarrow h(g, g) \)
Now what does g(g) do?

calls h(g, g):

\[h(g, g) \rightarrow \text{if } 1, \text{ then } g \text{ halts on input } g. \]

Then g(g) should loop forever.

\[h(g, g) \text{ outputs } 0 \text{, then } \text{it should halt.} \]

This means it looped forever, \(g \) cannot exist.
So... what next?

Clearly, lots of things are doable in polynomial time.

Some things are impossible.

But - is there anything in between?

Idea: exponential time

no n^c (poly)

$2^n \cdot n$
Candidate: Circuits

Boolean gates

An AND gate, an OR gate, and a NOT gate.

- No loops
- Given inputs, can calculate output in linear time; basically evaluate in BFS order
Q: Given a boolean circuit, is there a set of inputs that evaluate to true?

Circuit satisfiability (Circuit SAT)

true
Best known algorithm:
try all 2^m possible inputs.

Running time: $2^m(n+m)$

The current best-known bound is no proof stating it couldn't be done faster.
$P \subseteq NP \subseteq co-NP$

Consider decision problems: Yes or No.

P: set of decision problems that can be solved in polynomial time.

Ex.: is this list sorted?

NP: set of problems st. if the answer is yes, this can be checked in poly. time.

(So can verify a yes answer.)
Ex: Circuit SAT
given set of boolean inputs
can check that they give
yes answer.

co-NP: set of problems where
we can check a no answer
in poly time.
NP-Hard

Π is NP-hard \iff If Π can be solved in polynomial time, then $P=NP$

So if an NP-Hard problem can be solved in polynomial time, then any problem in NP can be solved in polynomial time.

(Paths story ...)

P vs NP
A problem is NP-Complete if it is both:
- in NP
- NP-Hard

More of what we *think* the world looks like.

polynomial hierarchy
To prove NP-Hardness of A:

Reduce a known NP-Hard problem to A.
bipartite matching

$G \rightarrow \text{changed to a flow network } G'$

$G' \rightarrow \text{max flow alg (of size } k\text{)}$
So to prove your problem is hard, solve a different problem using your problem as a subroutine.

Cook's Theorem: Circuit SAT is NP-Hard.

(Just trust me)
Def: SAT takes a boolean formula ϕ and asks if it is possible to assign booleans so the formula is true.

Ex: \((a \lor b \lor c \lor \overline{d}) \leftrightarrow ((b \land \overline{c}) \lor (\overline{a} \Rightarrow d) \lor (c \neq a \land b))\)

m variables, n clauses

In NP: given assignment a, b, c, d, can check if it evaluates to true in $O(m+n)$ time.
Thm: SAT is NP-hard.

Pf: Reduction:

Reduce circuit SAT to SAT
So our reduction looks like this:

boolean circuit $\xrightarrow{O(n)}$ boolean formula

trivial $\xrightarrow{\text{SAT}}$ TRUE or FALSE

or: