Announcements

- HW 1 up, due in class next Friday
 (may still work in groups)

- Thursday office hours next week may move - stay tuned...
Recursion: Quicksort

Downside of MergeSort - space!
Hard to do in place.
(Also harder to code...)

Simpler divide + conquer: Quicksort

Idea? Select a "pivot"
Pseudocode

\textbf{QuickSort}(A[1..n]):
\begin{align*}
\text{if } (n > 1) \\
&\text{Choose a pivot element } A[p] \\
&k \leftarrow \text{Partition}(A, p) \\
&\text{QuickSort}(A[1..k - 1]) \\
&\text{QuickSort}(A[k + 1..n])
\end{align*}

But how to partition?
\textbf{Partition}(A[1..n], p):
if (p \neq n)
 swap A[p] \leftarrow A[n]

i \leftarrow 0; \quad j \leftarrow n
while (i < j)
 repeat i \leftarrow i + 1 until (i = j or A[i] \geq A[n])
 repeat j \leftarrow j - 1 until (i = j or A[j] \leq A[n])
 if (i < j)
 swap A[i] \leftarrow A[j]

if (i \neq n)
 swap A[i] \leftarrow A[n]
return i

\Rightarrow \Theta(n)
Proof: (sketch)

Very similar to mergesort:

* First show partition works given any array as input + any p.
* Then use induction on entire array.
Analysis:

Depends on choice of pivot:

\[Q(n) = O(n) + Q(k-1) + Q(n-k) \]

Worst case:

\[Q(n) = O(n) + O(n) + O(n-1) \]

\[= n + (n-1) + \ldots + 1 \]

\[= O(n^2) \]
A recursive strategy: backtracking

Idea: Build up a solution iteratively.

Setting: an algorithm needs to try multiple possibilities.

Strategy: make a recursive call on each possibility.

Downside: slow
Ex: Subset Sum

Given a set X of positive integers and a target t, is there a subset of X which sums to t?

Ex: $X = \{8, 6, 7, 5, 3, 10, 9\}$

$t = 15$

Yes

$\{8, 7\}$

$\{10, 5\}$

$\{6, 9\}$

Ex: $t = 20$

Yes

$\{8, 7, 5\}$
How could we look at things incrementally (or recursively)?

Set up: take an item \(x \in X \).

Two possibilities:
- \(x \) is in subset
- \(x \) is not

- \[\exists y \in \mathbb{Y} \]

\[t \]

- \[\exists y \in \mathbb{Y} \]

\[t - x \]
Careful —
that is the recursive case!

What is missing?
(i.e. when are we done?)

- If X is empty, can't hit any $t \geq 0$
- If $t < 0$, done
Pseudo code

\textbf{SubsetSum}(X[1..n], T):
 if \(T = 0\)
 return \textbf{TRUE}
 else if \(T < 0\) or \(n = 0\)
 return \textbf{FALSE}
 else
 return (\textbf{SubsetSum}(X[2..n], T) \lor \textbf{SubsetSum}(X[2..n], T - X[1]))

(tail recursion)
Correctness

IS: Either \(X[i] \) is in subset or not (if subset summing to \(T \) exists).

My code tries both possibilities.

\[\rightarrow \text{Base case: } T = 0 \Rightarrow \text{true} \]
\[\phi \text{ sums to 0} \]
\[T < 0 \Rightarrow \text{no set sums to } T \]
\[X \text{ is empty - can't hit positive} \]
Runtime:

\[S(n) = 5 + 2S(n-1) \]

\[s_n = 2s_n + 5 \]

\[x - 2 = 0 \quad \text{poly of degree 0} \]

\[S(n) = c_1 2^n + c_2 \]

(use base cases to check \(c_1 \neq 0 \))

\[c_1 2^0 + c_2 = 1 \]

\[c_1 2^1 + c_2 = 5 \]

\[S(n) = \Theta(2^n) \]
Side note: brute force
- try every subset (2^n)
- for each, sum values and check = T
 $O(n)$

$\implies O(n \cdot 2^n)$