1. You are interested in analyzing some hard-to-obtain data from two separate databases. Each
database contains \(n \) numerical values, so that there are \(2n \) total, and you may assume that
no two are the same. You’d like to determine the median value of this set of \(2n \) values, which
we define to be the \(n^{th} \) value.

However, the situation is complicated by the fact that you can only access these values
through queries to the databases. In a single query, you can specify a value \(k \) to one of the
two databases, and the chosen database will return the \(k^{th} \) smallest value that it contains.
Since queries are expensive, you would like to compute the median using as few queries as
possible.

Given an algorithm that finds the median value using at most \(O(\log n) \) queries. Be sure
to specify the algorithm, the analysis for the number of queries, and a justification (i.e. a
proof) that your algorithm returns the median value.

2. An inversion in an array \(A[1..n] \) is a pair of indices \((i, j) \) such that \(i < j \) and \(A[i] > A[j] \).
The number of inversions in an \(n \)-element array is between 0 (if the array is sorted) and \(\binom{n}{2} \)
(if the array is in reverse sorted order, so that every possible pair is inverted).

Describe and analyze an algorithm to count the number of inversions in an \(n \)-element array
in \(O(n \log n) \) time. [Hint: Don’t reinvent the wheel! Can you modify mergesort somehow to
track these?]

3. Consider an \(n \)-node complete binary tree, where \(n = 2^d - 1 \) for some value \(d \), which we call
the depth of the tree. Every node \(v \) of \(T \) is labeled with a real number \(x_v \). (You may assume
that the real numbers labeling the nodes are all distinct.) A node \(v \) of \(T \) is a local minimum
if the label \(x_v \) is less that the label \(x_w \) for all nodes \(w \) that are jointed to \(v \) by an edge. (Note
that you consider both the parent and the children here!)

You are given a complete binary tree \(T \), but the labeling is only specified implicitly: for
each node \(v \), you can determine the value \(x_v \) by probing the node \(v \). Show how to find a local
minimum of \(T \) using only \(O(\log n) \) probes to the nodes of \(T \).