1. Suppose you are given an array $A[1..n]$ of integers. Describe and analyze an algorithm that finds the largest sum of elements in a contiguous subarray $A[i..j]$. For example, if the array contains $(-6, 12, -7, 0, 14, -7, 5)$, the largest sum of contiguous entries is $19 = 12 - 7 + 0 + 14$.

2. We define a subsequence as anything that can be obtained from a sequence (or list of things) by extracting a subset of the elements but keeping them in the same order. For example, the strings C, YAIOAI, and DYNAMICPROGRAMMING are all subsequences of the string DYNAMICPROGRAMMING.

Let $A[1..m]$ and $B[1..n]$ be to arbitrary arrays. A common subsequence of A and B is another sequence that is a subsequence of both A and B. Describe an efficient algorithm to compute the length of the longest common subsequence of A and B.

3. Consider a graph with n vertices. Recall that a subset of the vertices is called independent if no two of them are joined by an edge. Finding large independent sets is difficult in general, as we discussed in class, but can be done on some simple classes of graphs.

 Call a graph a path if its vertices can be written as v_1, v_2, \ldots, v_n with an edge between each v_i and v_{i+1} (but no other edges). With each vertex v_i, we associate a weight w_i.

 Our goal in this problem is to find the largest weight independent set. (Note that this is different from the largest independent set, since here we take the weights into account!)

 (a) Construct an example showing why the following simple greedy algorithm does NOT always work.

   ```
   S ← ∅
   While G is not empty:
      Pick a node $v_i$ of maximum weight
      Add $v_i$ to $S$
      Delete $v_i$ and its neighbors from $G$
   Return S
   ```

 (b) Construct an example showing why the following different simple greedy algorithm does NOT always work.

   ```
   S_1 ← \{v_i \text{ with } i \text{ odd}\}
   S_2 ← \{v_i \text{ with } i \text{ even}\}
   oddsum ← \text{sum of all weights in } S_1
   evensum ← \text{sum of all weights in } S_2
   if evensum > oddsum
      return $S_2$
   else
      return $S_1$
   ```

 (c) Give an algorithm that takes an n-vertex path G with weights and returns an independent set of maximum total weight. Your running time should be polynomial in n.