CSCI 3100

Flows, pt 2
More formally:

Given a directed graph with two designated vertices, s and t.

Each edge is given a capacity $c(e)$.

Assume:

- No edges enter s.
- No edges leave t.
- Every $c(e) \in \mathbb{Z}$ in integers.

Goal:

Max flow: find the most we can ship from s to t without exceeding any capacity.

Min cut: find smallest set of edges to delete in order to disconnect s and t.
Thm: (Ford-Fulkerson '54, Elias-Feinstein-Shannon '56) The max flow value = min cut value

Last time:
any flow \leq\ any cut

why?

\text{Value}(f) = \sum_{e\text{ out of }S} f(e)

\text{Cost}((S,T)) = \sum_{e\text{ out of }S} c(e)
Today:
- An algorithm for max flow
 (continued from last time)
- The proof of correctness will prove F-F theorem
Keys:

Residual network G_f:

A flow f in a weighted graph G and the corresponding residual graph G_f.

Augmenting a path:

An augmenting path in G_f with value $F = 5$ and the augmented flow f'.
Algorithm: Ford–Fulkerson (1956)

MAX Flow (G):

Let $f(e) = 0$ initially

Construct $G_f = G$

While there is s-t path in G_f:

Let P be a simple s-t path

$f' \leftarrow \text{augment } (f, P)$

$f \leftarrow f'$

update G_f

return f

Last time:

Lemma: At each stage, flow & residual values are integers.
Lemma: In each iteration,
value \(f' \) > value \(f \).
In each iteration, value improves.

pf:
found a path \(P \) in \(G_f \).
This \(P \) had some bottleneck edge.
By prior lemma, that edge was an integer.
It was positive.
value \(f' \) increased by this bottleneck amount:

\[\text{Value}(f') = \text{value}(f) + \text{bottleneck}(P) \]
Cor: The while loop halts after \(O(\text{value}(f^*)) \) iterations, where \(f^* \) is a maximum flow (since gets larger by at least 1 each stay an integer).

So: Running time is:

\[O(1f^*, m) \]

\[O(Cm) \]

\[C = \sum_{\text{all capacities}} \]

\[O(C'm) \]

\[\sum_{\text{edges out of} s} \]
Note: This is the best we can do!

Worst path:

To do better, need to consider how to choose a "good" augmenting path.
Thm: The F-F algorithm terminates with a maximum flow.

To prove this, we'll use cuts!

Fact: For any S-T cut, \[\text{value}(f) = f^{out}(s) - f^{in}(s) \]

pf:
\[
\text{value}(f) = f^{out}(s)
\]

Know \(f^{in}(s) = 0 \)

since \(s \) has no incoming edges

\[\Rightarrow \text{value}(f) = f^{out}(s) - f^{in}(s) \]
for all $v \in S$ other than s

\[f^n(v) = f^{out}(v) \]

\[\Rightarrow f^{out}(v) - f^n(v) = 0 \]

\[\Rightarrow v(f) = \sum_{v \in S} (f^{out}(v) - f^n(v)) \]

Rewrite: Consider edges

if $e = uv$:

$u, v \in S$:

know appears twice in sum above- once pos, once neg.

$u, v \notin S$:

not in sum

$u \in S, v \notin S$:

appears as $+f(e)$

$u \notin S, v \in S$:

appears as $-f(e)$
Goal: $v(f) = f^{out}(S) - f^{in}(S)$

have:

$v(f) = \sum_{v \in S} (f^{out}(v) - f^{in}(v))$

$= \sum_{e \in \text{out of } S} f(e) - \sum_{e \in \text{into } S} f(e)$

$= f^{out}(S) - f^{in}(S)$
Thm: Let f be any s-t flow in G, and let T be any s-t cut.

Value (f) \leq Cost (S,T)

\[
\text{value} (f) = f^\text{out} (S) - f^\text{in} (S) \leq f^\text{out} (S) = \sum_{e \text{ out of } S} f(e) \leq \sum_{e \text{ out of } S} C(e) = \text{cost}(S,T)
\]
Thm: If \(f \) is a \(s-t \) flow with no \(s-t \) path in \(G_f \), then \(\exists \) an \(s-t \) cut \((S^*, T^*) \) in \(G \) with \(\text{cost}(S^*, T^*) = \text{value}(f) \).

Cor: \(\text{max flow} = \text{min cut} \)

Proof: Use \(G_f \):
pf (cont.)
Faster versions
- Depend upon choosing good augmenting paths!

Ex: Edmonds - Karp:
choose largest bottleneck edge
\(\Rightarrow \mathcal{O}(E^2 \log E \log K^*) \)

Ex: shortest augmenting path
\(\Rightarrow \mathcal{O}(VE^2) \)
Table: Maximum-Flow Algorithms

<table>
<thead>
<tr>
<th>Technique</th>
<th>Direct</th>
<th>With dynamic trees</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking flow</td>
<td>$O(V^2E)$</td>
<td>$O(VE \log V)$</td>
<td>[Dinitis; Sleator and Tarjan]</td>
</tr>
<tr>
<td>Network simplex</td>
<td>$O(V^2E)$</td>
<td>$O(VE \log V)$</td>
<td>[Dantzig; Goldfarb and Hao; Goldberg, Grigoriadis, and Tarjan]</td>
</tr>
<tr>
<td>Push-relabel (generic)</td>
<td>$O(V^2E)$</td>
<td>—</td>
<td>[Goldberg and Tarjan]</td>
</tr>
<tr>
<td>Push-relabel (FIFO)</td>
<td>$O(V^3)$</td>
<td>$O(V^2 \log(V^2/E))$</td>
<td>[Goldberg and Tarjan]</td>
</tr>
<tr>
<td>Push-relabel (highest label)</td>
<td>$O(V^2 \sqrt{E})$</td>
<td>—</td>
<td>[Cheriyan and Maheshwari; Tunçel]</td>
</tr>
<tr>
<td>Pseudoflow</td>
<td>$O(V^2E)$</td>
<td>$O(VE \log V)$</td>
<td>[Hochbaum]</td>
</tr>
<tr>
<td>Compact abundance graphs</td>
<td>$O(VE)$</td>
<td>—</td>
<td>[Orlin 2012]</td>
</tr>
</tbody>
</table>

Several purely combinatorial maximum-flow algorithms and their running times.