CSCI 3100

Using Flows
Today:
- HW is posted
 due Monday, Oct 30
Last week: max flow

Now: Applications

The real power of flows is how many problems can be solved using it!

Steps:

1. Model problem as a graph
2. Analyze runtime
3. Correctness: Solve to problem flow of some value
Example: Edge disjoint paths

Goal: find the number of edge disjoint paths between s and t in G.
How? Put capacity 1 on each edge. Calculate max flow. Output value (f).

Runtime:

runtime of F^F: $O(mC)$ or $O(mf)$ (etc)
Correctness:

\[k \text{V paths } \iff \text{flow of value } k \]

pf: edge disjoint s-t paths

\[\Rightarrow \text{ Spps I get } k \text{ paths.} \]

Since edge disjoint, I can push 1 flow along each path.

This respects capacity (since \(\leq 1 \) on each edge) & vertex constraints since s-t path \[\rightarrow \]

\[\Leftarrow \text{ flow f of value } k. \]

Get 1 path: pick edge of out s with \(f(e) = 1 \).

Next vertex must have edge out \(v \) (flow = 1): continue until you hit t \[\rightarrow P \]

Continue after remove those edges!
What about vertex disjoint paths?
Modify G:

For each $V
eq s,t$, create 2 copies v_i, v''_i:

- $G' := G$
- add directed edge of cap=1 from v'_i to v''_i
- any incoming edges to v'_i becoming outgoing to v''_i

all capacity = 1

flow of value k in G'

$\Rightarrow k$ disjoint paths in G
Problem: Bipartite matching

Set of edges s.t. each vertex is used ≤ 1

Why?

Connect to all sorts of matching problems
How? Flows!

A maximum matching in a bipartite graph G, and the corresponding maximum flow in G'.

Algorithm:

Construct a new graph:
- Add s and t.
- Direct all edges from $L \to R$.
- Send $s \to L$ edges $\leftrightarrow R$ to $+t$ edges.

Runtime: Capacity 1 on all edges.
Run flows on G'.
Analyze in terms of G':
$$O\left(\frac{|E(G)|}{k} \cdot \log^3 k\right) = O(m-n)$$
Correctness

matching w/ k edges

⇐ flow of value k

to easy

⇐: Take flow:
s-t flow uses only L-R edges, can decompose into paths

⇒ a matching
Another: Assignment Problems
Ex: on doctors at a hospital
 ok vacation days

Need: A doctor scheduled
 on every vacation day
 no doctor scheduled on more than 3 vacation days
 each doctor submits a list of \(\geq 5 \) vacation days that they are available to work on

Q: Is there a feasible schedule?
To solve: build a graph
Runtime:

Correctness:

flow of size k \iff valid schedule