CS 3100

BFS, MST
Announcements

- HW due today
- Next HW: oral grading, end of next week
- Midterm: Wednesday October 18
 review on Monday in class
Last time:
- Graph representations
- Graph traversals: DFS

Idea: determine connectivity - can we reach vertex u from vertex v?

(We're doing undirected, but all can be modified for directed - usually just by making sure edge lists have only outgoing edges.)
Pseudocode: two versions

RecursiveDFS(v):
- if v is unmarked
 - mark v
 - for each edge vw
 - RecursiveDFS(w)

IterativeDFS(s):
- Push(s) \(O(1)\)
- while the stack is not empty
 - \(v \leftarrow \text{Pop} \ O(1)\)
 - if v is unmarked
 - mark v
 - for each edge vw
 - Push(w) \(O(1)\)

\(O(m+n)\) total

Really, building a "tree":

DFS tree:
General traversal strategy in DFS, bag = stack

Traverse(s):
- put s into the bag
- while the bag is not empty
 - take v from the bag
 - if v is unmarked
 - mark v
 - for each edge vw
 - put w into the bag

Q: Can we use a different "bag"?
- Queue
BFS: use a queue

Traverse(s):
- put s into the bag
- while the bag is not empty
 - take v from the bag
 - if v is unmarked
 - mark v
 - for each edge vw
 - put w into the bag

"distance" traversal

$O(m+n)$
BFS vs. DFS.

- Both can tell if 2 vertices are connected.
- Both can be used to detect cycles.
 How? If revisit an edge, must have some cycle.
- Both run in $O(V+E) = O(n^2)$.

Difference:

"long - thin" "bushy"

A depth-first spanning tree and a breadth-first spanning tree of one component of the example graph, with start vertex a.

- Both run in $O(V+E) = O(n^2)$.

Difference:

"long - thin" "bushy"
Dfn: A **tree** is a maximal acyclic graph, always with \(n-1 \) edges.

(DFS + BFS can both be used to get trees.)

Dfn: A **component** of a graph is a maximal connected subset of \(G \).

![Diagram of a tree and components](image)
New setting: a weighted graph

A graph $G = (V, E)$ together
with a weight function $w: E \rightarrow \mathbb{R}$
that gives a weight $w(e)$ to each edge.

In this setting, finding shortest paths is much more interesting!

We'll start with a more basic question:

What is the best tree contained in the graph?

acycles

\[\text{minimum}\]
Problem: Minimum Spanning Tree

Find a set of edges which connects all vertices and is as small as possible.

A weighted graph and its minimum spanning tree.

Applications: obvious
Strategy:

- We'll start by assuming edge weights are unique: $w(e) \neq w(e')$.

How to get started?

Idea: Choose Smallest Edge. (greedy!)
Intermediate stage

Now suppose we have a partial MST—a forest.

Better: Add min edge if not forming a cycle.
Lemma: Let S be any subset of V ($\neq \emptyset$ or V). Let e be the edge of minimum weight between S and $V - S$. Then e is in any MST of G.

Proof:

Suppose e is not in MST.

Let T be MST not containing e. Some edge of T must leave S, say e'.
Prove $T - e' + e$ is better:

- minimum is clear:
 \[w(e) < w(e') \]

T was a tree: \(\forall u,v \), there was a path in T from u to v.

If path didn't use e', still there.

If it did: let $e = xy$.

Use u-to-x path $+ e'$, $+ y$ to v path.

so $T - e' + e$ is still a tree. \(\blacksquare \)
A bit further: Take a forest F:

Define a safe edge for any component of F as the minimum weight edge with only one endpoint in that component.

A useless edge is one not in F with both endpoints in the same component.

Note: Prior lemma says any safe edge can be added to the MST!
Algorithm:
Start with \(n \) vertices.
Compute the safe edges.
Add them.
Recurse on the new forest.

Example:
This is Borůvka’s algorithm, from 1926.
(Also others—often called Sollin’s algorithm.)

Pseudo code:

Borůvka\((V, E)\):

\[
F = (V, \emptyset) \\
\text{count} \leftarrow \text{COUNTANDLABEL}(F) \\
\text{while count} > 1 \\
\quad \text{ADDALLSAFEEDGES}(E, F, \text{count}) \\
\text{count} \leftarrow \text{COUNTANDLABEL}(F) \\
\text{return } F
\]

ADDALLSAFEEDGES\((E, F, \text{count})\):

\[
\text{for } i \leftarrow 1 \text{ to count} \\
\quad S[i] \leftarrow \text{NULL} \quad \langle \text{sentinel: } w(\text{Null}) := \infty \rangle \\
\text{for each edge } uv \in E \\
\quad \text{if label}(u) \neq \text{label}(v) \\
\qquad \text{if } w(uv) < w(S[\text{label}(u)]) \\
\qquad \quad S[\text{label}(u)] \leftarrow uv \\
\qquad \text{if } w(uv) < w(S[\text{label}(v)]) \\
\qquad \quad S[\text{label}(v)] \leftarrow uv \\
\text{for } i \leftarrow 1 \text{ to count} \\
\quad \text{if } S[i] \neq \text{Null} \\
\qquad \text{add } S[i] \text{ to } F
\]

Essentially:

- Find min nbr for each vertex.
- Label each component:
 - use DFS/BFS
- Find min edge leaving + add to F
- repeat
Runtime:

Sort edges (once):

At each stage, get \(Y_2 \) many components (worst case)

\# stages:

\[T(n) = T \left(\frac{n}{2} \right) + 1 \]

\(\Rightarrow \) \(O(\log n) \) stages

\(\Rightarrow \) \(O(m \log n) \) algorithm
Other algorithms:

Prim's algorithm: add a safe edge, one at a time
(Really Jarnik's from 1929)

How to implement?