CSCI 3100: Algorithms

Today:
- Big-O
- Algorithm analysis
- Recursion

Algorithms by Complexity

MORE COMPLEX

LETPAD QUICKSORT GIT MERGE SELF-DRIVING CAR GOOGLE SEARCH BACKEND SPRAWLING EXCEL SPREADSHEET BUILT UP OVER 20 YEARS BY A CHURCH GROUP IN NEBRASKA TO COORDINATE THEIR SCHEDULING
3 parts to every algorithm:

1.

2.

3.

+ sometimes 4:
This week: why you should have paid attention in discrete math & data structures!

Topics to recall:
Runtimes:
What is big-O analysis?

Why use it?
Formal def:

Let f and g be functions $\mathbb{R} \rightarrow \mathbb{R}$ (or $\mathbb{Z} \rightarrow \mathbb{R}$). We say that:

$f(n) = O(g(n))$ if there exist constants C and n_0 such that:

$|f(n)| \leq C|g(n)|$ for all $n > n_0$.
Big-O: functions ranking

BETTER
- $O(1)$: constant time
- $O(\log n)$: log time
- $O(n)$: linear time
- $O(n \log n)$: log linear time
- $O(n^2)$: quadratic time
- $O(n^3)$: cubic time
- $O(2^n)$: exponential time

WORSE

![Big-O Complexity](image)

The graph shows the complexity of different functions as the number of elements increases, with $O(1)$ being the most efficient and $O(2^n)$ the least efficient.
Example proof:

\[f(x) = x^2 + 2x + 1 \text{ is } O(x^2) \]

pf:
Key thm:

Let \(f(x) \) be a polynomial of degree \(n \), so
\[
\sum_{i=0}^{n} a_i x^i
\]
where each \(a_i \in \mathbb{R} \).

Then \(f(x) = O(x^n) \).

pf sketch:
Induction: recursion's twin

A method of proving a statement which depends on the statement being true for smaller values.

Required pieces:
Aside: I think of this as "automating" a proof:

Show true for \(n=1 \).

Show if \(n \) holds, then \(n+1 \) must also.

\(\Rightarrow \) Get all \(n \) for free!
Example: \[\sum_{i=0}^{n} i = \]
Example: The gossip problem

- There are \(n \) people, each of whom knows a unique secret.
- Every time 2 of them talk, they share every secret they know.

Q: How many phone calls are necessary before everyone knows all the secrets?
Thm: For $n \geq 4$, $2n-4$ calls are enough.

Pf:
Now: Recursion

- Induction started at the bottom and builds up.

Recursion: the natural dual idea:
Recurrence relations:

\[H(n) = 2H(n-1) + 1 \]

\[M(n) = 2M\left(\frac{n}{2}\right) + n \]

\[T(n) = T\left(\frac{3n}{4}\right) + n \]

How to solve?
Recursive algorithms:
Based on reduction:
Reduce to a smaller instance of the same problem.

Necessary pieces (like induction):
Classical example: Towers of Hanoi

The Tower of Hanoi puzzle
Strategy: think recursively!

Start small:

[Diagram of a simple structure]
Bigger picture:

HANOI(n, src, dst, tmp):
if $n > 0$

- HANOI($n - 1$, src, tmp, dst)
- move disk n from src to dst
- HANOI($n - 1$, tmp, dst, src)

The Tower of Hanoi algorithm; ignore everything but the bottom disk
Proof of correctness:
Runtime:
Next time:

- Merge sort
- Master them
- Other classical algorithms