Generalized Persistent Homology: Part II, Why Homology?

David Letscher

Saint Louis University

SLU Topology Seminar
Goals

- Understand the underlying structure of persistent homology
- Use more general collections of topological spaces, not just filtrations
- Do we have to use homology?
Persistent Homology Recap

Filtration

\[X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow \cdots \]

A sequence of topological spaces with maps (often inclusion) between them.

Note: can be indexed by rationals, reals, ...

Homology of Filtration

\[H_k(X_0) \rightarrow H_k(X_2) \rightarrow \cdots \rightarrow H_k(X_n) \rightarrow \cdots \]

Persistent Homology

\[H^p_k(X_t) = im(H_k(X_t) \rightarrow H_k(X_{t+p})) = im(f_{t, t+p}) \]

where \(f_{\alpha, \beta} : H_k(X_{\alpha}) \rightarrow H_k(X_{\beta}) \) is the map induced by the include \(X_{\alpha} \rightarrow X_{\beta}. \)
Birth

An cycle \(c \in H_k(X_t) \) has birth time \(t \) if \(c \notin \text{im}(H_k(X_s) \to H_k(X_t)) \) for any \(s < t \).

Death

The death time of \(c \) is the smallest \(u \) such that the map \(f_{t,u} : H_k(X_t) \to H_k(X_u) \) maps \(u \) to 0.
Persistence Module

Definition

$\mathcal{P}H_k(X)$ is the submodule of $H_k(X_0) \oplus H_k(X_1) \oplus \cdots \oplus H_k(X_n)$ generated by elements of the form $(0, \ldots, 0, c, f_{\alpha,\alpha+1}(c), \ldots, f_{\alpha,\beta}(c) = 0, \ldots 0)$ where $c \in H_k(X_\alpha)$ has birthtime α.

Note: this is equivalent to the original definition (due to Carlsson and Zomordian) of the persistence module as a graded $\mathbb{F}[t]$-module.
Krull-Remak-Schmidt

Theorem

If M is a Noetherian Artinian module the M decomposes uniquely into direction summands

$$M \cong M_1 \oplus \cdots \oplus M_n$$

Recall that the standard persistence algorithm calculates birth and death pairs. Each of these pairs is a summand in the decomposition of the persistence module.

$$\mathcal{PH}_k(X) = \bigoplus_i F(b_i, d_i)$$

where $F(b, d) = 0 \oplus \cdots \oplus F \oplus \cdots F \oplus 0 \oplus \cdots \oplus 0$ has non-zero terms for $b \leq t < d$.
What is it? (Abstract non-sense?)

Provides a formal framework for mathematical objects, their properties, maps between them, ...
What is it? (Abstract non-sense?)

Provides a formal framework for mathematical objects, their properties, maps between them, ...

Examples

- Sets
- Groups, Abelian groups
- Rings, fields, modules, vector spaces
- Topological spaces
- ...
Definition

A category \mathcal{C} has the following:

- $\text{Obj}(\mathcal{C})$, the objects
- $\text{Hom}(\mathcal{C})$, the morphims (or maps) from on object in $\text{Obj}(\mathcal{C})$ to another. If $A, B \in \text{Obj}(\mathcal{C})$ then $\text{Hom}(A, B)$ is the space of all morphisms from $A \to B$.
- A binary operation \circ, called composition, of two morphisms. Formally, if $A, B, C \in \text{Obj}(\mathcal{C})$ then $\circ : \text{Hom}(A, B) \times \text{Hom}(B, C) \to \text{Hom}(A, C)$ that satisfies:
 - Associativity, for $f \in \text{Hom}(A, B), g \in \text{Hom}(B, C), h \in \text{Hom}(C, D)$, $f \circ (g \circ h) = (f \circ g) \circ h$.
 - Identity, for any object $A \in \text{Obj}(\mathcal{C})$, there is a morphism $1_A \in \text{Hom}(A, A)$, the identity morphism, such that for any $f \in \text{Hom}(A, B)$, $1_A \circ f = f = f \circ 1_B$.
Examples of Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>sets</td>
<td>set maps</td>
</tr>
<tr>
<td>Top</td>
<td>topological spaces</td>
<td>continuous maps</td>
</tr>
<tr>
<td>Mfld</td>
<td>smooth manifold</td>
<td>diffeomorphisms</td>
</tr>
<tr>
<td>Grp</td>
<td>group</td>
<td>group homomorphism</td>
</tr>
<tr>
<td>Ab</td>
<td>Abelian group</td>
<td>group homomorphism</td>
</tr>
<tr>
<td>Vect(_k)</td>
<td>vector space over the field (k)</td>
<td>linear maps</td>
</tr>
<tr>
<td>DAG</td>
<td>directed acyclic graphs</td>
<td>graph homomorphism</td>
</tr>
<tr>
<td>Mod</td>
<td>pairs ((R, M)) where (M) is module</td>
<td>module homomorphism</td>
</tr>
<tr>
<td></td>
<td>over the ring (R)</td>
<td></td>
</tr>
</tbody>
</table>
A map between categories

(Covariant) Functor

$F : C \to D$ consisting of

- For any $A \in Obj(C)$, $F(A) \in Obj(D)$
- For any $f \in Hom(A, B)$ where $A, B \in Obj(C)$, $F(f) \in Hom(F(A), F(B))$ such that
 - $F(f \circ g) = F(f) \circ F(g)$
 - $F(1_A) = 1_{F(A)}$
Functors

Arrows swap directions!

Contravariant Functor

$F : C \rightarrow \mathcal{D}$ consisting of

- For any $A \in \text{Obj}(C)$, $F(A) \in \text{Obj}(\mathcal{D})$
- For any $f \in \text{Hom}(A, B)$ where $A, B \in \text{Obj}(C)$, $F(f) \in \text{Hom}(F(B), F(A))$ such that
 - $F(f \circ g) = F(g) \circ F(f)$
 - $F(1_A) = 1_{F(A)}$

\[\begin{array}{ccc}
A & \xrightarrow{g} & B \\
& \lrcorner \swarrow f \swarrow f \circ g & \xrightarrow{C} \\
\end{array} \quad \iff \quad \begin{array}{ccc}
F(A) & \xleftarrow{F(g)} & F(B) \\
& \lrcorner \swarrow F(f) \swarrow F(f \circ g) & \xleftarrow{F(C)} \\
\end{array} \]
Examples of Functors

- Forgetful functor $F : \text{Grp} \rightarrow \text{Set}$ that ignores the group structure and restriction on group homomorphism.

- Abelianization function $F : \text{Grp} \rightarrow \text{Ab}$ that maps $G \rightarrow G/[G, G]$.

- Homology operator $H_k : \text{Top} \rightarrow \text{Ab}$ that sends topological spaces to their k-dimensional homology groups and continuous maps to their maps induced by inclusion.

- Homotopy operator $\pi_k : \text{Top} \rightarrow \text{Grp}$ that sends topological spaces to their k-dimensional homotopy groups and continuous maps to their maps induced by inclusion.

- Cohomology operator $H^k : \text{Top} \rightarrow \text{Ab}$ that sends topological spaces to their k-dimensional homology groups and continuous maps to their maps induced by inclusion. This is a contravariant functor.
A (graph) filtration can be thought of as a functor $\text{DAG} \to \text{Top}$.

\[
\begin{array}{cccccc}
\cdot & \rightarrow & \cdot & \rightarrow & \cdot & \rightarrow \\
\downarrow & & & & & \\
X_0 & \rightarrow & X_1 & \rightarrow & X_2 & \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6
\end{array}
\]

and the corresponding filtration of homology groups can also be thought of as a functor $\text{DAG} \to \text{Ab}$.

\[
\begin{array}{cccccc}
\cdot & \rightarrow & \cdot & \rightarrow & \cdot & \rightarrow \\
\downarrow & & & & & \\
H_k(X_0) & \rightarrow & H_k(X_1) & \rightarrow & H_k(X_2) & \rightarrow H_k(X_3) \rightarrow H_k(X_4) \rightarrow H_k(X_5) \rightarrow H_k(X_6)
\end{array}
\]
Natural Transformations

Definition

If \mathcal{C} and \mathcal{D} are categories with functors $F, G : \mathcal{C} \to \mathcal{D}$, a natural transformation $\mu : F \to G$ satisfies

- For each $A \in \mathcal{C}$, there is a map $\mu_A : F(A) \to G(A)$
- For each morphism $f \in \text{Hom}_\mathcal{C}(A, B)$, $\mu_B \circ F(f) = G(f) \circ \mu_A$

\[
\begin{array}{ccc}
F(A) & \xrightarrow{F(f)} & F(B) \\
\downarrow \mu_A & & \downarrow \mu_B \\
G(A) & \xrightarrow{G(g)} & G(B)
\end{array}
\]
Given two categories \(C \) and \(D \) (Require objects of \(C \) to be sets) there is a category \([C, D]\) where

- Objects are covariant functors \(F : C \rightarrow D \)
- Morphisms are natural transformations \(\mu : F \rightarrow G \)

For example, \([\text{DAG}, \text{Top}]\) and \([\text{DAG}, \text{Ab}]\).
Persistent Homology as a Functor!

\[PH_k : [\text{DAG, Top}] \to [\text{DAG, Ab}] \] is the functor that maps a filtration of spaces to the corresponding filtration of homology groups.

\[X_0 \to X_1 \to X_2 \to X_3 \to X_4 \to X_5 \to X_6 \]

Apply the persistent homology functor and get:

\[H_k(X_0) \to H_k(X_1) \to H_k(X_2) \to H_k(X_3) \to H_k(X_4) \to H_k(X_5) \to H_k(X_6) \]
If $F : \text{Top} \rightarrow \mathcal{C}$ is any functor, this induces a functor

$$PF : [\text{DAG, Top}] \rightarrow [\text{DAG, } \mathcal{C}]$$

- For example, $F = \pi_1$ induces persistent fundamental groups (or $F = \pi_k$ induces persistent homotopy).

$$P\pi_k : [\text{DAG, Top}] \rightarrow [\text{DAG, Grp}]$$

- PH^k is persistent cohomology
- (Persistent) Alexander module

Note the filtration doesn’t need to be an interval graph, it can be any DAG.
What Properties of Persistent Homology Remain?

- Persistent homology groups?
- Barcodes? Persistence diagrams?
- Persistence modules?
- Stability?

For simplicity, we will assume the DAGs are all interval graphs

```
```
Analogy of Persistent Homology Groups

\[H^p_k(X_i) = \text{im}(H_k(X_i)) \to H_k(X_{i+p}) \]

If the functor \(F : \text{Top} \to C \) is a topological invariant, that is homeomorphic spaces have the same image, then

\[F^p(X_i) = \text{im}(F(X_i)) \to \text{im}(F(X_{i+p})) \]

For non-interval graphs, can define this in terms of limits and co-limits.

Note: We need to assume \(C \) is a small category.
Persistence Diagrams

Birth time
There is a birth event at time \(\alpha \) if \(F(X_{\alpha-1} \to X_\alpha) \) is not an epimorphism.

Death time
If a birth event occurs at time \(\alpha \), the corresponding death event occurs at the smallest \(\beta \) such that \(\text{im}(F(X_{\alpha-1}) \to F(X_\beta)) = \text{im}(F(X_\alpha) \to F(X_\beta)) \).

Note: We need to assume \(\mathcal{C} \) is a small category and that the original filtration is topologically tame. (Only one topological change at any time.)

Persistence diagram
Consists of birth death pairs \((\alpha, \beta)\) in the plane.
Analogues of Persistence Modules

Modules have two main properties:

- Can add elements
- Can perform scalar multiplication over a base ring
- The operations have the correct unit, associate, commutative, and distributive properties.

Additive category

There is a functor $\bigoplus : C \times C \to C$.

Note: if C is additive then so is $[\text{Top}, C]$.

Do we need scalar multiplication?
Unique decompositions

Work in a Krull-Schmidt category, an additive category such that every object is either

- Indecomposable or can be written as a finite direct sum of indecomposables
- And decompositions are unique: if $X_1 \oplus \cdots \oplus X_m \cong Y_1 \oplus \cdots \oplus Y_n$ then $m = n$ and there exists a permutation π such that $X_{\pi(i)} \cong Y_i$.

When do these decompositions correspond to persistence diagrams?