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Abstract

The (Vietoris-)Rips complex of a discrete point-set P is an abstract simplicial complex in
which a subset of P defines a simplex if and only if the diameter of that subset is at most 1. We
describe an efficient algorithm to determine whether a given cycle in a planar Rips complex is
contractible. Our algorithm requires O(m log n) time to preprocess a set of n points in the plane
in which m pairs have distance at most 1; after preprocessing, deciding whether a cycle of k Rips
edges is contractible requires O(k) time. We also describe an algorithm to compute the shortest
non-contractible cycle in a planar Rips complex in O(n2 log n+mn) time.
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1 Introduction

A fundamental class of problems in computational topology deals with properties of paths and cycles
in various topological spaces that are invariant under continuous deformation, or homotopy. For
example, given two paths, can one be continuously deformed into the other? Given a topological
metric space, what is the shortest cycle that cannot be continuously contracted to a single point?
These and similar problems have been studied extensively for regions of the plane with holes [35,
31, 25, 3, 2, 25, 5] and graphs embedded on surfaces [26, 27, 15, 12, 6, 4, 11, 38, 42, 39, 16, 19].
Applications of these algorithms include problems in graph drawing [20], map simplification [5],
simplification and parameterization of surface meshes [33, 50], and approximation algorithms [17]
and fixed-parameter tractable algorithms [37] for generalizations of planar graphs.

For general simplicial complexes, even determining whether two paths are homotopic is un-
decidable [40]. For this reason, most topological algorithms for simplicial complexes are based
on homology, which provides a cruder classification of topological features than homotopy, but
generalizes more easily to higher dimensions [23, 24, 10, 29, 52].

In this paper, we develop algorithms for some basic homotopy questions in (Vietoris-)Rips
complexes. The Rips complex of a set of points is a simplicial complex that contains a simplex for
each subset with diameter less than 1. These complexes were introduced by Leopold Vietoris [48] as
the basis of an early homology theory; they were later independently discovered by Elaiyhu Rips and
popularized by Gromov [32] (who coined the name ‘Rips complex’) as a tool for studying hyperbolic
groups. Ghrist [29], Carlsson [8], and others have proposed Rips complexes as a lightweight
representation of the topological structure of high-dimensional data. A recent example of this
approach is the analysis by Carlsson and others [7, 9, 29] of a large set of nine-dimensional feature
points extracted from digital photographs (the “Mumford data set”). Rips complexes of points in the
plane have also been used to model coverage problems in sensor networks [30, 44, 43]; it is this
particular application which motivates the setting for this paper.

Our paper contains two main algorithmic results. The first is an efficient algorithm to determine
whether a given cycle in a planar Rips complex is contractible (Section 5). Our algorithm requires
O(m log n) time to preprocess a set of n points in the plane in which m pairs have distance at most 1.
After preprocessing, we can determine whether a cycle of k Rips edges is contractible in O(k) time.
Our second algorithm (Section 6) computes the shortest non-contractible cycle in the Rips complex
of a given planar point set, where length means either number of edges or total Euclidean length, in
O(n2 log n+mn) time. The efficiency of our algorithms relies on special geometric properties of the
Rips shadow (Sections 4 and 5.1), which we believe are of independent interest.

2 Preliminaries

We begin by recalling some standard definitions. For further background on algebraic and computa-
tional topology, see Edelsbrunner [22], Hatcher [34], Stillwell [45], and Zomorodian [51].

A simplicial complex X is a collection of simplices (points, segments, triangles, etc.) with the
following properties: (1) Any face of a simplex in X is another simplex in X ; (2) Any two simplices
in X intersect in a common face. The k-skeleton of X is the subcomplex consisting of all simplices
in X of dimension k or less. The flag complex F(G) of a graph G is the largest simplicial complex
whose 1-skeleton is G; every (k + 1)-clique in G defines a k-simplex in F(G).

Let P be a set of points in some metric space. The Vietoris-Rips complex Rε(P ) is the simplicial
complex that contains a k-simplex for each subset of k + 1 points with maximum pairwise distance
at most ε. For simplicity, we will refer to R(P ) = R1(P ) as the Rips complex of P . Equivalently,
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the Rips complex of P is the flag complex of the proximity graph of P , whose edges are all pairs of
points p, q ∈ P such that |pq| ≤ 1. See Figure 1 for an example. The closely related Čech complex
Čε(P ) is the simplicial complex that contains a k-simplex for every subset of k + 1 points contained
in a ball of radius ε.

Figure 1. A set of points in the plane, its proximity graph (the intersection graph of circles of radius 1/2), its Rips complex,
and its Rips shadow (see Section 3).

Given some topological space M , a path is a continuous function p : [0, 1]→M ; a path whose
endpoints coincide is called a loop. A homotopy between two paths p and p′ with the same endpoints
is a continuous function h : [0, 1]× [0, 1]→M such that H(0, t) = p(t) and H(1, t) = p′(t) for all t,
and H(s, 0) = p(0) = p′(0) and H(s, 1) = p(1) = p′(1) for all s. If M is a simplicial complex, a path
is generally constrained to lie along the 1-skeleton of the complex, and homotopies are comprised of
a series of elementary moves, each of which moves a portion of the path or cycle across a triangle.
Two paths are homotopic if there is a homotopy from one to the other. A loop is contractible if it is
homotopic to a point.

It is an easy exercise to verify that homotopy is an equivalence relation on the set of loops with
any fixed basepoint. The fundamental group π1(X,x) of a space X with basepoint x ∈ X is the group
of homotopy classes of loops based at x, with concatenation as the group operation and the set of
contractible cycles through x as the identity element. If X is connected, then π1(X,x1) ' π1(X,x2)
for any x1, x2 ∈ X; as a consequence, we frequently simply write π1(X).

3 The Shadow of the Rips Complex

For any planar Rips complex R (indeed for any abstract simplicial complex whose vertices are points
in the plane), there is a canonical projection map p : R → R2 that maps each simplex in R affinely
onto the convex hull of its vertices in R2. The Rips shadow S(P ) is the image of this canonical
projection map, or equivalently, the union of the convex hulls of all subsets of P with diameter at
most 1:

S(P ) :=
⋃
{conv(Q) | Q ⊆ P and max

p,q∈Q
|pq| ≤ 1}.

The Rips shadow is a planar region, possibly with holes, with a piecewise-linear boundary; intuitively,
the shadow is a polygon with holes whose boundaries may touch themselves and/or each other. The
boundary of the shadow can be decomposed into maximal line segments, which we call (shadow)
boundary edges, meeting at (shadow) boundary vertices. The collection of boundary vertices and
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boundary edges comprise the (shadow) boundary graph. We define the complexity of the shadow to
be the total number of boundary vertices and edges.

The canonical projection map p naturally induces a map π1(p) : π1(R(P ))→ π1(S(P )) between
the fundamental groups of the Rips complex and its shadow. Our algorithmic results rely heavily on
the following recent result of Chambers et al. [13]:

Theorem 3.1. For any set P of points in the plane, the induced map π1(p) : π1(R(P ))→ π1(S(P ))
is an isomorphism.

Equivalently, Theorem 3.1 states that a cycle γ in the Rips complex is contractible if and only if
its projection p(γ) is contractible in the Rips shadow. Note that S(P ) is homotopy equivalent to a set
of loops with common basepoint, where each loop winds around a hole in the shadow exactly one
time. Therefore, an immediate but important consequence of Theorem 3.1 is that the fundamental
group π1(R(P )) is a free group.

Unlike Čech complexes and α-shapes [21], the Rips complex and its shadow are not homotopy
equivalent in general. For example, for any positive integer n, if P is a set of 2n+ 2 points on a circle
of radius 1+1/n2, thenR(P ) is combinatorially isomorphic to an (n+1)-dimensional cross-polytope
and therefore homeomorphic to Sn, but S(P ) is a disk.

4 Computing the Shadow

In this section we develop an efficient algorithm to compute the Rips shadow S(P ) of a given set P
of n points in the plane. Our algorithm relies on two structural results, which may be of independent
interest. First, although the Rips complex R(P ) can have Θ(n2) edges and Θ(n3) triangles in the
worst case, the Rips shadow S(P ), which is the union of those edges and triangles, always has
complexity O(n). Second, there is a subset of O(n) Rips edges and Rips triangles whose union is the
entire the Rips shadow S(P ).

4.1 Linear Complexity

a

bc

d

x

Figure 2. Intersecting
Rips edges.

Lemma 4.1. If Rips edges ab and cd intersect, then (1) either ac or bd is a
Rips edge; (2) either ad or bc is a Rips edge; (3) at least one of abc, abd, acd,
or bcd is a Rips triangle.

Proof: Let x = ab ∩ cd. The triangle inequality implies that |ac| + |bd| ≤
|ax| + |bx| + |cx| + |dx| = |ab| + |cd| ≤ 2, so either |ac| ≤ 1 or |bd| ≤ 1.
Similarly, either |ad| ≤ 1 or |bc| ≤ 1. �

Lemma 4.2. Let ab and cd be Rips edges that intersect at a point x = ab ∩ cd, such that neither abc
nor acd is a Rips triangle. Then |ac| > 1 and ∠axc > π/3.

Proof: Lemma 4 implies that either ad or bc is a Rips edge. Thus, if ac were a Rips edge, then either
abc or acd would be a Rips triangle.

We have both |ax| ≤ |ab| < 1 and |cx| ≤ |cd| < 1. Thus, ac is the unique longest side of triangle
acx, so its opposite angle ∠axc is the unique largest angle. �

Theorem 4.3. The Rips shadow of n points in the plane has combinatorial complexity O(n).
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Proof: Fix a set P of n points in the plane. We assume without loss of generality that R(P ) and
therefore S(P ) are connected; if not, we can analyze each connected component independently.
This assumption implies that each hole in S(P ) has a single boundary cycle.

We bound the complexity of the Rips shadow by (over-)counting the number of boundary edges
and vertices. The same boundary vertex or edge may appear multiple times on the same facial
walk or on multiple walks; we count each occurrence separately. To simplify our presentation, we
consider the two sides of any Rips edge or shadow boundary edge separately; for any edge uv, let
−⇀uv and −⇀vu denote its two oriented halfedges. A facial walk now consists of a sequence of boundary
halfedges, oriented with the hole on the left; two consecutive boundary halfedges −⇀xy and −⇀yz form a
boundary corner at y. We prove that there are O(n) boundary corners.

We say that a Rips halfedge −⇀pq is uncovered if there is no Rips triangle pqr with r to the left of
the oriented line −→pq. Every corner of the shadow boundary is located at the intersection of two
uncovered halfedges, possibly at a common endpoint.

If −⇀pq and −⇀pr are two uncovered Rips halfedges with a common source point p, then ∠qpr > π/3
by Lemma 4.2. It follows that any point in P is the source of at most five uncovered halfedges,
giving at most 5n uncovered edges total. In addition, there are at most five boundary corners at any
point in P .

p

qr

s

x z
y

Figure 3. Charging a boundary corner
to one end of an uncovered halfedge.

Let −⇀pq and −⇀rs be uncovered Rips halfedges, with r to the left
of −⇀pq, whose interiors intersect at boundary vertex y. Suppose
some pair of boundary halfedges −⇀xy ⊂ −⇀pq and −⇀yz ⊂ −⇀rs form a
boundary corner at y. Lemma 4.1 implies that either prs or pqs
is a Rips triangle, since either of the other two possible triangles
would cover −⇀pq or −⇀rs. If prs is a Rips triangle, segment py lies
inside the shadow, so y is the closest boundary corner to p, among
all boundary corners on −⇀pq. See Figure 3. Similarly, if pqs is a
Rips triangle, y is the boundary corner on −⇀rs that is closest to s.

Thus, every boundary corner that is not a point in P is either the first or last boundary corner on
some uncovered halfedge. It follows that there are at most 10n boundary corners not at points in P ,
and thus at most 15n boundary corners overall. �

4.2 Linear Coverage

Theorem 4.4. For any set P of n points in the plane, there is a set of O(n) Rips edges and Rips
triangles whose union is the Rips shadow S(P ).

Proof: Fix a set P of n points in the plane and an arbitrary point p ∈ P , and let P ′ = P \ {p}. As in
the previous proof, we assume thatR(P ) and thus S(P ) are connected; if not, we prove the theorem
independently for each component. We prove that S(P ) is the union of S(P ′) and a constant number
of Rips edges and triangles, each of which have p as a vertex; the theorem then follows immediately
by induction.

Let Q′ denote the set of Rips neighbors of p, and let Q = Q ∪ {p}. S(P ′) is the union of all Rips
edges and triangles that do not have p as a vertex, and S(Q) contains all Rips edges and triangles
incident to p, so S(P ) = S(P ′) ∪ S(Q). Thus, it suffices to prove that S(Q) is the union of S(Q′)
and O(1) Rips triangles incident to p.

We divide the plane into six congruent wedges by three lines through p. Let W0, . . . ,W5 be the
(possibly empty) subsets of Q inside these wedges, indexed in order around p.

Each set Wi has diameter less than 1, which implies that conv(Wi ∪ {p}) = S(Wi) ⊆ S(P ).
For each non-empty set Wi, let `i and ri denote the leftmost and rightmost points in Wi, and let
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4i = conv(p, `i, ri). In particular, if Wi contains only one point, then `i = ri, and 4i = pri. If Wi is
empty, we set 4i = ∅. We clearly have S(Wi ∪ {p}) = S(Wi) ∪4i.

Consider two nonempty subsets Wi and Wj with i < j and i 6= j − 3. (There are at most 12 such
subset pairs.) We define a triangle 4i,j such that

S(Wi ∪Wj) ∪4i ∪4i,j ∪4j = S(Wi ∪Wj ∪ {p}) (?)

Let Bi,j denote the concave chain of edges on the boundary of Si,j = S(Wi ∪Wj ∪ {p}), which starts
at a vertex of conv(Wi), ends at a vertex of conv(Wj), and contains no other Rips vertices. Without
loss of generality, suppose p lies ‘below’ Bi,j . Every boundary edge of Bi,j is a subset of a Rips edge
with one endpoint in Wi and the other in Wj .

We claim that for any Rips edge qr that touches Bi,j , the triangle4i,j = pqr satisfies Equation (?).
See Figure 4. Consider another Rips edge st that touches Bi,j , such that s is above qr and r is above
st. We easily verify that qrt and qst are Rips triangles. By considering all such edges st, we conclude
that the region bounded by the chain Bi,j , the edge qr, and the rays −→pri and

−→
plj lies entirely within

S(Wi ∪Wj), which establishes our claim.

ppp

Wi

Wj
lj

ri

Bi,j

Figure 4. Left: S(Wi ∪Wj). Middle: Adding 4i, 4i,j , and 4j . Right: S(Wi ∪Wj ∪ {p})

If non-empty subsets Wi and Wj lie in opposite wedges (i = j ± 3), then we may need to define
two triangles 4i,j and 4j,i on opposite sides of p, so that

S(Wi ∪Wj) ∪4i ∪4i,j ∪4j,i ∪4j = S(Wi ∪Wj ∪ {p})

It suffices to choose arbitrary triangles 4i,j and 4j,i incident to p that touch the two concave chains
connecting Wi to Wj .

This gives a total of at most 24 triangles (or edges) which must be added to form S(P ) from
S(P ′), which concludes the proof. �

4.3 Construction Algorithm

Theorem 4.5. Given a set P of n points in the plane, we can construct S(P ) in O((m + n) log n)
time, where m is the number of edges in the proximity graph of P .

Proof: We first describe a simpler algorithm that runs in O(n2 log n) time, and then describe a
general reduction strategy that improves the running time to O(m log n).

Our simple algorithm computes a set of O(n) Rips triangles whose union is S(P ), as follows. For
each point p ∈ P , we execute the following subroutine. Fix a point p ∈ P . We can easily compute
the six neighbor sets W1, . . . ,W6 of p from Theorem 4.4 in O(n) time. For each set Wi, we compute
the extreme points li and ri in O(n) time and add the triangle prili to the output list. For each of
subsets Wi and Wj , we compute the triangle 4i,j as follows. We construct the Voronoi diagram of
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Wj , and then for each point q ∈Wi, we compute its nearest neighbor r ∈Wj using a point-location
query. Then, among all segments qr that have length at most 1, we determine the one that intersects
the ray −→pri furthest from p and add the resulting triangle pqr to the output list. The subroutine runs
in O(n log n) time, so the total time to compute the O(n) covering triangles is O(n2 log n). Once we
have the covering triangles, we can compute their union in O(n2) time with a standard sweepline
algorithm.

To reduce the running time to O(m log n), we impose a grid of 1/2× 1/2 squares over the point
set, and independently compute the intersection of S(P ) with each grid square. Let c1, c2, . . . , cN
denote the grid cells that are within distance 3 of some point in P ; clearly N = O(n). For each
i, let Ci denote the 5/2× 5/2 square with the same center as grid cell ci, let Pi = P ∩ Ci, and let
Ni = |Pi|. Observe that S(P ) ∩ ci = S(Pi) ∩ ci, since all Rips edges have length ≤ 1. For each point
p ∈ P , we determine the subsets Pi that contain it; this takes O(n) time overall. Then for each
index i, we compute O(Ni) triangles whose union is S(Pi) using our earlier algorithm, intersect
each of these triangles with ci, and compute the union of the resulting polygons. Finally, we glue
the resulting sub-shadows together along their common boundaries, in O(n) time, to obtain S(P ).
The total running time of this algorithm is

∑
iO(N2

i logNi).
To complete our analysis, we prove that

∑
iN

2
i = O(m+ n). For each i, let ni = |P ∩ ci|, and let

us write i ∼ k to mean ci ⊂ Ck, so that Nk =
∑

i∼k ni. We immediately have∑
k

N2
k =

∑
k

∑
i∼k

∑
j∼k

ninj ≤
∑
k

∑
i∼k

∑
j∼k

(n2
i + n2

j )/2 =
∑
k

∑
i∼k

n2
i ≤ 25

∑
i

n2
i .

On the other hand, we also have
∑

i

(
ni
2

)
≤ m, because each cell ci has diameter less than 1. We

conclude that
∑

iN
2
i ≤ 50m+ 25n, as claimed. �

5 Testing Contractibility

In this section, we describe an efficient algorithm to determine whether a given cycle of Rips edges
is contractible, or equivalently, whether two paths with common endpoints are homotopic, in the
Rips complex R(P ). Theorem 3.1 implies that a cycle γ is contractible in R(P ) if and only if its
projection p(γ) is contractible in the Rips shadow S(P ). Thus, testing contractibility is simply a
matter of tracking how many times the projected cycle p(γ) winds around each hole.

The fastest algorithm known for testing the contractibility of cycles in planar regions is due
to Cabello et al. [5]. Their algorithm tests whether a cycle of k edges is contractible in the plane
minus n point obstacles in time O(k

√
n log n), after O(n1+ε) preprocessing time, by applying a

planar ray shooting data structure [36] to a spanning tree of the obstacles with stabbing number
O(
√
n) [14, 41, 49]. We can directly apply their algorithm to Rips cycles by choosing an arbitrary

point in each hole of the Rips shadow, plus one point outside the outer boundary; this requires
O(m log n) additional preprocessing time.

The special geometric structure of Rips shadows allows us to develop a faster and simpler
algorithm, with the same preprocessing time. Our algorithm constructs a spanning tree of the holes
such that any unit-length line segment crosses a constant number of edges. (Such a spanning tree
does not exist for general planar regions—consider a unit square containing a

√
n×
√
n grid of tiny

holes.) The existence of this spanning tree follows from another structural result of independent
interest: Although holes in the Rips shadow can have arbitrarily small area, they cannot have
arbitrarily small diameter.
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5.1 No Small Holes

Lemma 5.1. Let A be a set of n ≥ 4 arcs on a common circle C, each subtending an angle larger
than 4π/5, whose union is the entire circle. A contains four arcs that cover C.

Proof: Let |α| denote the angular length of arc α. Start with an arbitrary arc α1 ∈ A. Let α2 be the
clockwise-most arc in A that overlaps α1, and let α3 be the clockwisemost arc in A that overlaps α2.
If |α1 ∪ α2| ≤ 6π/5, then |α2 ∪ α3| ≥ 6π/5, because α1 and α3 must be disjoint..

Thus, without loss of generality, we can assume that |α1 ∪ α2| ≥ 6π/5. Let α′1 be the counter-
clockwise-most arc in A that overlaps α2, and let α′0 be the counterclockwise-most arc in A that
overlaps α′1. We still have |α′1 ∪ α2| ≥ 6π/5, so |C \ (α′1 ∪ α2)| ≤ 4π/5. Thus, arcs α′0 and α3 must
overlap, which implies that α′0, α

′
1, α2, α3 cover the circle. �

Theorem 5.2 (No small holes). Any hole in the Rips shadow of a set of points in the plane has
circumradius at least (

√
2− 1)/8

√
3 ≈ 0.029893.

Proof: Let H be a hole in the Rips shadow of a planar point set P . For any real ρ > 0, let Dρ denote
the open disk of radius ρ centered at the origin o, let Cρ = ∂Dρ denote its boundary circle, and let
Pρ = X ∩Dρ. Every pair of points in P1/2 is connected by a Rips edge, so the Rips shadow of P1/2 is
equal to its convex hull.

Suppose H lies inside the disk Dρ. Fix a real value σ = (1 +
√

5)ρ < 1/2. There are three cases
to consider: (1) Pσ is empty; (2) Pσ is nonempty and H is convex; and (3) there is a point in P on
the boundary of H. (It will become clear during the prof that these cases are exhaustive.) Each case
will imply different lower bounds on the radius ρ. The first case is by far the most involved.

w

a b

c

d

ef

g

h x

yz

Figure 5. Rips edges bounding
a quadrilateral pseudohole. The
dashed segments are not Rips edges.

CASE 1: ALL POINTS FAR FROM THE HOLE. Suppose Pσ = ∅. In this
case, H must be convex. Let e1, e2, . . . , er denote the Rips edges
bounding H. For each edge ei, let αi denote the portion of Cσ
separated from H by ei. Because σ = (1 +

√
5)ρ = ρ/ cos(2π/5),

each arc αi subtends an angle larger than 4π/5, and these arcs
cover the entire circle. Lemma 5.1 implies that four of these arcs
αi, αj , αk, αl also cover the circle. The corresponding Rips edges
ei, ej , ek, el bound a convex quadrilateral pseudohole H̃ that lies
inside Dσ.

To simplify notation, we relabel the endpoints and intersection
points of the edges ei, ej , ek, el, as shown in Figure 5. Label the
endpoints a, b, c, d, e, f, g, h in clockwise order, so that (without loss
of generality) ei = af , ej = be, ek = ch, and el = dg. We also label
the vertices of H̃ in clockwise order: w = af ∩ dg, x = af ∩ be,
y = be ∩ ch, and z = ch ∩ dg.

Lemma 4.2 implies that there are no other intersections among these segments; all eight
endpoints are distinct. We prove that points a, b, e, f are in convex position as follows; a similar
argument implies that c, d, g, h are also in convex position. Suppose b is inside triangle aef , and let
s = −→be ∩ af . We immediately have |sf | < |af | ≤ 1. Segment bf crosses through the hole H, so we
must have |bf | > 1 and therefore |ef | > 1.

Point s is outside Cσ and segments se and sf intersect Cρ, so ∠esf < 2 arcsin(ρ/σ) ≤ π/5.
Together with the inequalities |sf | < 1 and |ef | > 1, this implies that |es| > (1 +

√
5)/2, from which

it follows that |bs| > (
√

5− 1)/2 and therefore |es| > (
√

5− 1)/2. We conclude that the minimum
distance between sf and be is more than (

√
5− 1)/2. On the other hand, sf and be both intersect
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Cρ; it follows that ρ > (
√

5− 1)/4, so σ > 1, which is impossible. Thus, b cannot be inside triangle
aef , so (by symmetric arguments) a, b, e, f must be in convex position.

Because Rips edges af and dg intersect (at z), Lemma 4.1 implies that either ag or df is a Rips
edge. The triangles adg and adf intersect the hole H and therefore must not be Rips triangles. It
follows that ad is not a Rips edge; a similar argument implies that bg, cf , and eh are not Rips edges.
Also, since segments ae, bf , cg and dh intersect the hole H, none of them can be Rips edges. We
thus have the following inequalities:

|ae| > 1, |bf | > 1, |cg| > 1, |dh| > 1, |ad| > 1, |bg| > 1, |cf | > 1, |eh| > 1.

Now the triangle inequality implies that

|gz|+ |dz| = |dg| < 1 < |ad| < |az|+ |dz|;

it follows immediately that |gz| < |az|. A symmetric argument implies that |ey| < |gy|; thus,

|ey| < |gy| = |gz|+ |yz| < |az|+ |yz|.

But the triangle inequality also implies that |az| + |yz| + |ey| > |ae| > 1, so we must have
|az|+ |yz| > 1/2. It follows that

|fw| = |fz|+ |wz| < 1− |az|+ |wz| < 1
2

+ |yz|+ |wz|.

An analogous argument implies that |cw| < 1/2 + |wx|+ |xy|.
The four interior angles of H̃ sum to 2π, so we can assume without loss of generality that

∠cwf ≤ π/2, which implies that |fw|2 + |cw|2 ≥ |cf |2 > 1. Plugging in our upper bounds for |cw|
and |fw| and simplifying, we find that

(|wx|+ |xy|) + (|wx|+ |xy|)2 + (|yz|+ |wz|) + (|yz|+ |wz|)2 > 1
2
.

Thus, without loss of generality, (|wx|+ |xy|) + (|wx|+ |xy|)2 > 1/4, so |wx|+ |xy| > (
√

2− 1)/2.
On the other hand, each edge of H̃ intersects Dρ, and by Lemma 5, each interior angle of H̃ is

greater than π/3; these facts imply that each edge of H̃ has length less than 2
√

3ρ. We conclude
that ρ > (

√
2− 1)/8

√
3 ≈ 0.029893.

CASE 2: POINTS NEARBY, BUT SEPARATED FROM THE HOLE. Now suppose there is a point p ∈ X such
that |op| < σ, and there is a line ` separating P1/2 from the interior of H. In this case, H must be
convex. Without loss of generality, we assume the line ` is vertical and that H lies to its right. Let
x be the rightmost vertex of H; this point is the intersection of two Rips edges ab and cd, both of
which are uncovered on the left. In particular, abp and cdp are not Rips triangles, so we can assume
without loss of generality that |ap| > 1 and |cp| > 1.

If |ao| < 1/2 and |co| < 1/2, then |ac| < 1, contradicting the fact that ∠axc is an uncovered
corner. Thus, at least one of the Rips edges through x has both endpoints outside D1/2.

Suppose |ao| > 1/2 and |bo| > 1/2. Let y be the point on ab closest to the origin o; clearly
|oy| < ρ. The triangle inequality implies (crudely!) that |by| > 1/2− ρ and therefore

1 < |ap| < |op|+ |oy|+ |ay| < σ + ρ+ (1− |by|) < 1/2 + σ + 2ρ.

It follows that σ + 2ρ > 1/2 and therefore ρ > 1/2(3 +
√

5) ≈ 0.095492.
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CASE 3: POINT ON THE HOLE BOUNDARY. Finally, suppose there is no line separating P1/2 from the
interior of H. In this case, the convex hulls of P1/2 and H must have intersecting interiors, which
implies that H is non-convex. In particular, some vertex p of convX1/2 lies in the interior of convH
and is therefore a concave vertex of H. Without loss of generality, suppose the vertical line through
p has the rest of convX1/2 to its left.

The remainder of the argument is identical to the previous case, except now we have |op| < ρ.
The rightmost vertex x of H is the intersection of two Rips edges ab and cd, both uncovered on the
left. Without loss of generality, we have the following inequalities:

|ap| > 1, |cp| > 1, |ao| > 1/2, |bo| > 1/2.

The triangle inequality implies that |by| > 1/2− ρ and therefore

1 < |ap| < |op|+ |oy|+ |ay| < 2ρ+ (1− |by|) < 1/2 + 3ρ.

We conclude that ρ > 1/6 ≈ 0.166666. �

5.2 Contractibility Algorithm

Our algorithm follows a standard strategy used by Cabello et al. [5] and many other authors
[35, 19, 18, 15, 12, 16, 47] for encoding the homotopy class of paths and cycles in two-dimensional
spaces. We compute a sequence of line segments φ1, φ2, . . . , φb, which we call fences, that form a
spanning tree of the holes; we assign each fence an arbitrary orientation. The crossing word of any
cycle γ records the sequence of fences that γ crosses, along with the direction of each crossing. For
example, the crossing word 1223 indicates that γ first crosses φ1 from left to right, then φ2 from left
to right, then φ2 from right to left, and finally φ3 from left to right. We can reduce any crossing word
by removing any matching pairs of the form xx or xx; each reduction corresponds to a continuous
deformation of γ that removes some fence crossings. Finally, γ is contractible if and only if its
reduced crossing word is empty.

Our spanning tree construction is a straightforward consequence of Theorem 5.2.

Lemma 5.3. Let P be a set of points whose Rips shadow has b holes. Given S(P ), we can compute
in O(n) time a set of b disjoint line segments φ1, . . . , φb such that (1) S(P )\

⋃
i φi is simply connected,

and (2) any line segment of length 1 crosses O(1) segments φi.

Proof: Consider an axis-aligned grid of squares of width 1/100 that covers the shadow S(P ). A
simple packing argument implies that S(P ) intersects at most O(n) cells in this grid, and clearly,
any unit-length segment intersects O(1) grid cells.

Figure 6. Fences in the Rips shadow.

We output three types of fences φi. Each vertical fences extends
directly downward from the lowest intersection point of a hole with
a vertical grid line, to either another hole or the outer boundary.
Any hole that touches a vertical grid line is connected by a sequence
of vertical fences and holes to the outer boundary; it remains only
to connect thin holes that lie in strips between adjacent vertical grid
lines. Each horizontal fence extends horizontally from the leftmost
or rightmost intersection point of a thin hole with a horizontal grid
line, to either another hole or the outer boundary, without crossing
any vertical fence. After inserting as many horizontal fences as
possible, some clusters of thin holes may still be isolated. Finally,
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for each cluster of thin holes, we extend a cluster fence from the lowest point in that cluster, either
to the highest point in the next lower cluster in the same strip, or directly downward to some other
boundary, whichever is closer. See Figure 6.

The horizontal and vertical fences are carried by the edges of the grid. By Theorem 5.2, each
thin hole intersects at least two horizontal grid lines, so at most one cluster fence intersects any grid
cell. It follows that any line segment crosses at most three fences within any grid cell, and thus O(1)
fences overall. �

Theorem 5.4. After O(m log n) preprocessing time, we can determine whether any given cycle of
k Rips edges is contractible in R(P ), either in O(k log n) time using O(n) space, or in O(k) time
using O(m) space.

Proof: We can determine the crossing word for any unit-length line segment in O(log n) time in two
different ways. The first method is to preprocess the degenerate simple polygon S ′ = S(P ) \

⋃
i φi

for ray-shooting, using the ‘pedestrian’ data structure of Hershberger and Suri [36]. The ‘polygon’
S ′ has complexity O(n), so we can build the ray-shooting data structure in O(n) time. The second,
even simpler method is to store the grid cells that intersect any fence φi in a hash table. There are
at most O(n) such grid cells. For each such grid cell, we keep sorted arrays of the horizontal and
vertical fences on its boundary, as well as the cluster fence in its interior (if any). Given any unit
segment s, we can easily determine in constant time which grid cells it intersects. For each such grid
cell 2, we can find the (at most two) fences on the boundary of 2 that s crosses using binary search,
and then assemble the crossing word of s ∩2 in O(1) time.

To test whether a cycle is contractible, we consider the edges one by one in order, maintaining
the reduced crossing word of the path traversed so far. Each new edge adds O(1) symbols to the
crossing word, so we can perform the necessary reductions in O(1) time per edge. With no additional
preprocessing, the total time is O(k log n). Alternately, if we precompute the crossing word of every
Rips edge, we can process any cycle in constant time per edge. �

6 Finding the Shortest Noncontractible Cycle

Finally, we describe how to find the shortest cycle in the Rips complex that is non-contractible. We
assume that each edge pq in the proximity graph has a non-negative weight w(pq); the length of a
cycle is the sum of the weights of its edges. Our results hold for any non-negative edge weights; in
particular, we can minimize either the number of edges or the total Euclidean length of the cycle.

For any point p and any Rips edge qr, let C(p, qr) denote the cycle of Rips edges composed of
the shortest path from p to q, the edge qr, and the shortest path from r back to p. The following
characterization of shortest non-contractible cycles was first observed by Thomassen [46, 42] for
graphs embedded on surfaces; see also [26].

Lemma 6.1. For any point p ∈ P , the shortest non-contractible cycle in R(P ) that passes through p
is the cycle C(p, qr) for some Rips edge qr.

Proof: Let C be the shortest non-contractible cycle containing p. Let x be the point furthest from p
on C; this point could be in the interior of a Rips edge. Points p and x partition C into two paths of
equal length; call these paths α and β. Let γ be any other path from p to x. If γ is shorter than α
and β, then the shorter loops αγ and γβ must be contractible. But this is impossible, because the
concatenation of those two loops is homotopic to C = αβ, which is by definition non-contractible.
We conclude that α and β are the shortest paths from p to x. Finally, let qr be any edge in C that
contains the point x. �
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Theorem 6.2. Given a set P of n points in the plane, we can compute the shortest non-contractible
cycle in R(P ) in O(n2 log n+mn) expected time.

Proof: As in the previous algorithm, we preprocess P for fast contractibility queries in O(m log n)
time. We also construct the shortest path tree Tp by running Dijkstra’s algorithm at each point p ∈ P ,
in total time O(n2 log n+mn).

For each point p, we store the reduced crossing crossing words of the shortest paths from p to
every other point in P in a trie [28], which we denote T̃p. We also store a pointer from each point q
(as a node in Tp) to the corresponding node q̃ in T̃p. Because the crossing word each edge of Tp has
constant length, Hp has only O(n) nodes. In a standard trie, each node would store an array of O(n)
child pointers, bringing the total size of T̃p to O(n2). To avoid the extra space overhead, we use a
hashed trie, in which each node with r children stores them in a hash table of size O(r). Standard
dynamic hashing techniques allow us to insert a new child at any node in O(1) expected amortized
time. Consequently, we can construct each hashed trie Hp in O(n) expected time.

Finally, we preprocess Hp for constant-time least-common-ancestor queries in O(n) time, using
the algorithm of Bender and Farach-Colton [1]. The reduced crossing word Xp(q, r) can be extracted
from the edge labels on the unique path in T̃p from q̃ to r̃; no further reductions are necessary. In
particular, if this path is longer than X(qr), then the cycle is non-contractible.

We now have all the necessary data structures to determine in O(1) time, given any point p and
any Rips edge qr, whether the cycle C(p, qr) is non-contractible. First we find the least common
ancestor z of q̃ and r̃. We then assemble the crossing word X(p, qr) by walk up the trie from q̃ to z,
and then walking up the trie from r̃ to z. If either walk is longer than X(qr), we abort and report
that the cycle is non-contractible. Otherwise, we report that the cycle is contractible if and only if
Xp(q, r) = X(qr). The total time to test all possible cycles C(p, qr) is O(mn). �
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