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Abstract

We give an O(g2n log n) algorithm to represent the
shortest path tree from all the vertices on a single spec-
ified face f in a genus g graph. From this represen-
tation, any query distance from a vertex in f can be
obtained in O(log n) time. The algorithm uses a kinetic
data structure, where the source of the tree iteratively
moves across edges in f . In addition, we give applica-
tions using these shortest path trees in order to compute
the shortest non-contractible cycle and the shortest non-
separating cycle embedded on an orientable 2-manifold
in O(g3n log n) time.

1 Introduction

A shortest path tree (sp-tree) in a graph is a tree con-
taining shortest paths from some vertex to all other ver-
tices. Sp-trees are a fundamental tool on graphs, and
have applications for flows, distance queries, connectiv-
ity, and many other problems.

In the planar graph setting, there are many results
for multiple source shortest paths. The result of primary
interest for the purposes of this paper is Klein [9], who
addressed the problem of maintaining the sp-tree in a
plane graph as the source of the tree moves along some
face in the graph. He gave an algorithm that represented
the sp-tree for all vertices on a common face in the
graph in O(n log n) time. Other noteworthy results on
multiple source shortest paths include Frederickson’s
all-pairs shortest paths representation [6], Lipton and
Tarjan’s planar separator theorem [11], and Schmidt’s
O(n log n) algorithm which supports distance queries for
specific subsets of vertices on a grid [13].

In this paper, we give an algorithm to maintain
the sp-tree as the source of the tree moves around a
face on a genus g graph, that is, a graph embedded in
an orientable surface of genus g. This result extends
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Klein’s result on plane graphs, and the running time
to compute the sp-tree for every vertex on a given face
becomes O(g2n logn).

In Klein’s algorithm, the source of the shortest path
tree is moved to a neighbor of a vertex, and then the sp-
tree is updated edge by edge based on a set of candidate
edges which should now be in the sp-tree. The next
edge from the set is chosen based on what Klein refers
to as the leafmost unrelaxed edge, which exploits the
property that the edges not present in the sp-tree form
a tree in the dual graph.

A main obstacle to extend this idea to genus g
graphs is that the structure of the edges not present
in the sp-tree is more complex, and in particular the
concept of leafmost unrelaxed edge does not carry on.
This makes harder to find out which edges have to
be added and removed from the sp-tree, as well as
in which order these operations should be done. Our
approach consists of looking at the scenario like a kinetic
sp-tree, where we maintain the sp-tree as the source
moves continuously along an edge. Edges to add and
remove from the sp-tree are discrete events which we
compute during the course of this movement. (For more
background on kinetic data structures in general, see
[7].)

As applications, we use our algorithm to find in an
embedded graph a shortest non-contractible in O((g +
b)g2n log n) time, and a shortest non-separating cycle
in O(g3n log n) time. Here b is the number of bound-
aries of the surface. The best previous results for
this problem were O(n2 log n) by Erickson and Har-
Peled [5], O(g3/2n3/2 log n) by Cabello and Mohar [1],
and O(gO(g)n logn) by Kutz [10]. Our approach im-
proves them for a large range of values of g.

The main tool we use is the self-adjusting top
tree [16]. A review of this data structure along with
necessary topological background is provided in Section
2. Section 3 describe the maintenance of the shortest
path tree when the root moves along an edge. First,
we present the planar case to illustrate the necessary
concepts, and then give the algorithm on a graph of
genus g. Section 4 gives the analysis of the time used
when the root moves along a face. Section 5 gives the
algorithms to compute the shortest non-separating and
non-contractible cycles on an embedded graph.



2 Background

2.1 Self-adjusting top trees. For our algorithm,
we require a dynamic forest data structure supporting
edge insertions and deletions. In addition, each vertex
of the forest will maintain a number which is its distance
to some vertex in the graph. Updates to this distance
data must be supported on both subtrees and paths
within the tree.

The data structure used here is the self adjusting
top tree [16]. Operations used in our application are
join, cut, and expose. We briefly describe these
operations.

The operations join(u, v) and cut(u, v) respec-
tively add an edge between u and v in different com-
ponents of the forest and delete the edge between u and
v. The operation expose(u, v) makes the path between
u and v in the forest (if it exists) the top-level path in
the data structure, allowing quick updates and searches
in this path. All of these operations can be supported
in O(log n) amortized time.

2.2 Graphs. Throughout the paper, we work on a
weighted, embedded graph G = (V, E), where V is the
vertex set and E is the edge set. The weight of an edge
uv is denoted w(uv). The dual graph of G, written G∗,
consists of the graph given by making every face of G
a vertex, and adding edges between adjacent faces. For
e ∈ E, we use e∗ to denote the edge in the dual graph
which goes between the two faces that e borders.

As in Klein’s paper, we define dT : V → IR as the
distance in a rooted directed tree T from the source of
the tree to a given vertex. (We omit T when the tree
is clear from context.) Define the tension of an edge −→uv
as t(−→uv) = d(v) −w(−→uv) − d(u) (for more examples, see
[15]). We say the edge −→uv is tense if t(−→uv) > 0. In other
words, if −→uv is tense, there is a shorter path to v which
uses a path in the tree to v plus the edge −→uv. It is a
simple exercise to verify if a tree T on G leaves no tense
edges in (E \ T ), then T is a sp-tree.

For simplicity, we assume that all shortest paths in

G are unique. As pointed out in [5], this condition can
be obtained with high probability: the Isolation Lemma
of Mulmuley, Vazirani, and Vazirani [12] implies that
adding an infinitesimal weight ε · r(e) to each edge e,
where r(e) is chosen from [1, 2, . . . , n2] uniformly at ran-
dom, makes all shortest paths unique with probability
at least 1 − 1/n.

2.3 Topological background. We briefly present
some concepts and definitions from algebraic and com-
binatorial topology. For more detailed background, see
also [14] and [17].

A surface, or 2-manifold with boundary, is a topo-

logical Hausdorff space where each point has a neigh-
borhood homeomorphic to either the plane (if the point
is interior) or the closed half-plane (if the point is on
the boundary). Surfaces considered here are connected
and compact, and are orientable unless otherwise speci-
fied. Any connected compact orientable surface is home-
omorphic to a sphere with g handles and b open disks
removed. We say g is the genus of the surface and b is
the number of boundaries.

Let M be a surface. A curve or path on M is a
continuous map p : [0, 1] → M . The endpoints are
denoted p(0) and p(1). A loop with basepoint x is a
path p with x = p(0) = p(1). An arc α is a path whose
endpoints are in the boundary. A cycle is a continuous
map γ : S1 → M , where S1 is the unit circle. A curve
is simple if it is one-to-one. Two cycles are disjoint if
the do not intersect, and two paths are disjoint if they
intersect only at their endpoints.

A homotopy between two paths p and q, with
p(0) = q(0) and p(1) = q(1), is a continuous map
H : [0, 1]×[0, 1] → M such that H(0, ·) = p, H(1, ·) = q,
H(·, 0) = p(0) = q(0), and H(·, 1) = p(1) = q(1). A
homotopy between two cycles γ and β is a continuous
map H : [0, 1]× S1 such that H(0, ·) = γ and H(1, ·) =
β. A cycle is contractible if it is homotopic to a constant
cycle. An arc whose endpoints are in the same boundary
component δ is non-contractible if after contracting δ to
a point, the obtained loop is non-contractible. A simple
cycle or arc is separating if M \ γ has two connected
components.

For the topological results in this paper, we work
on the combinatorial surface model. This model has
been commonly used for most related results [1], [2], [3],
[5]. A combinatorial surface is an abstract surface M
together with a weighted undirected graph G embedded
on M such that each open face is a disk. Allowed paths
are walks in G, and the length of a path is the sum of
the weights of the edges on the path (with multiplicity).
The multiplicity of a path is the maximum number of
times that an edge appears in it. The complexity of
the combinatorial surface, usually denoted by n, is the
number of vertices, edges, and faces in the embedding
of G.

In a combinatorial surface, a curve or cycle in M is
simple if it can be infinitesimally perturbed to a simple
curve in M . Any arrangement of curves in the surface
can be seen as an embedded graph [3], which basically
handles this by increasing the number of vertices and
edges appropriately to obtain a graph G′ where the
curves are edge-disjoint. This allows us to assume that,
in the surface, all the curves considered are generically
embedded.



3 Updating the sp-tree

Suppose that we are given the sp-tree rooted at some
vertex u. We wish update the tree so that it becomes
the shortest path rooted at v, a neighbor of u. View the
sp-tree as a kinetic data structure, in which the root s
slides continuously from u to v along the edge e = −→uv.
Any vertex whose shortest path to s goes through v
immediately before reaching s is called a blue vertex.
All other vertices are colored red. Note that in the
sp-tree rooted at s, the vertices of each color form a
subtree of the sp-tree, since any vertex’s shortest path
to s must go through either u or v. The blue vertices
are in some sense already in the final sp-tree, since their
shortest paths to s do not change as s moves closer to
v. Eventually, when s arrives at v, the sp-tree rooted at
v is obtained.

As s slides across e a distance ∆, the distance from
s to every red vertex increases by ∆, and the distance
from s to every blue vertex decreases by ∆. When an
edge −→xy is about to become tense (i.e. if t(−→xy) was
negative and just became = 0), then d(y) = d(x)+w(−→xy)
for some red vertex y and blue vertex x. This means
that as s continues to move along e, the path from s to
y that goes through x is to be shorter than the previous
shortest path.

When an edge becomes tense, we have an event in
the sp-tree. In an event, the edge immediately preceding
y along its shortest path to s should be deleted, and the
edge −→xy is added to the sp-tree instead. Additionally, y
and all the vertices in its subtree should be recolored to
blue, since the shortest path to s now passes through v
last.

The kinetic property we exploit here is that we have
no extraneous events. Each time an edge becomes tense,
we must do exactly one cut and one join in the sp-tree.
Using appropriate data structures, a running time of
O(log n) per update to the sp-tree is obtained. The
main issue becomes detecting what edges come in and
out in the tree.

In the algorithm, we use two types of data struc-
tures. The first holds the sp-tree T , and the second
maintains a subgraph of the dual graph (G \ T )∗. The
main difference between the algorithms for the planar
case and the genus g case is the dual structure. In a
planar graph, the duals of edges not contained in the
sp-tree form the so-called cotree, a spanning tree of the
dual graph. However, in a genus g graph, there are O(g)
extra edges that ruin this cotree structure and make the
algorithm more complicated.

In the primal structure, we have a directed forest
that is a subgraph of the current sp-tree. Each vertex
implicitly maintains its distance to s. Note that all of
the following operations can be implemented in O(log n)

(worst-case) time using Euler-Tour trees [8].

• GetValue(v) returns d(v).

• Cut(e′) removes the specified edge e′ from the
current forest.

• Join(e′) adds the edge e′ to the forest. (This
operation assumes the forest remains acyclic after
adding e.)

• AddSubtree(∆, x) adds the value ∆ to every vertex
in the subtree rooted at vertex x.

In the dual graph, we need a different set of
operations. These differ in the planar and non-planar
cases, and will be described in more detail in the
appropriate sections.

3.1 Planar graphs. We begin with the algorithm in
the planar case. This algorithm is similar to Klein’s
[9] in that the same tree and cotree decomposition is
used, and the basic idea of relaxing edges is the same.
However, we relax edges in our kinetic data structure
one by one as the source moves along an edge, instead
of changing the root and then relaxing edges iteratively
from a set of tense edges as Klein does.

Our algorithm begins with a sp-tree T rooted at a
vertex s = u, and moves the source s of the sp-tree T
across a fixed edge e = −→uv. In the dual graph, each edge
xy∗ dual to an edge xy that is not in T stores t(−→xy) and
t(−→yx). This set of edges in (G \ T )∗ forms a spanning
tree. We use the following operations, each of which
can be performed in O(log n) amortized time using self
adjusting top trees [16].

• Cut(e) cuts the edge e from the tree, and returns
two new separate trees.

• Join(e) adds the edge e, joining two trees into a
single tree.

• AddPath(∆, π) adds ±∆ to the tension of each of
the edges in the path π. (The value +∆ is added
to the tension of the edge oriented from red to blue
vertex, and −∆ is added to the orientation from
blue to red.)

• MaxPath(π) finds the edge in the path π that has
maximum tension (where the tension is oriented
from a blue vertex to a red vertex).

Assume that e is in the sp-tree. Any (primal) edge
whose tension is changing must have one blue endpoint
and one red endpoint, since any edge with monochro-
matic endpoints has constant tension (its endpoints



Figure 1. The thick lines in the graph are the sp-tree rooted and the
source, shown moving along the edge e. As s moves closer to the
target, an edge along the green path in the dual (shown in dotted
lines) becomes tense and is inserted.

change at the same rate). This means that the set
of edges whose tension is changing corresponds to the
unique path in T ∗ that goes between the endpoints of
e∗. Call this set of edges green, and let the dual path
consisting of all the green edges be π∗.

If the edge e is not in the sp-tree, all vertices are
red. At some stage e becomes tense, since the distance
from s to v along e is going to zero as s slides along
e. At this stage, the edge e enters the sp-tree, and the
subtree rooted at v is immediately colored blue.

Once e is in the sp-tree, the algorithm iterates over
the following steps until either every vertex is blue or
s reaches v. See Figure 1. We call MaxPath on the
two endpoints of e∗ to find the first edge −→xy that has
t(−→xy) > 0 as u slides towards v. Let ∆ be the amount
the root needs to slide for −→xy to become tense.

Next, move the source s a distance ∆ along the
edge e and update the distances in the primal tree
and tension in the dual tree. AddPath(π∗, 2∆) up-
dates the tensions of the green edges. In the primal
tree, AddSubtree(u, ∆) adds ∆ to every distance for
vertices in the red subtree, simulating the root slid-
ing along the edge e by a distance of ∆. Similarly,
AddSubtree(v,−∆) updates the distance from s to the
blue vertices.

Now we must actually update the sp-tree to reflect
the new edge being added. We first Cut(wy) where
−→wy is the last edge in the path in T from s to y.
Then Join(−→xy) reconnects s to y via the new shorter
path. This reconnects the sp-tree, and recolors y and
its subtree blue.

To update the dual spanning tree, we call Cut(xy∗)
to remove the dual edge whose tension is no longer
changing, and then Join(wy∗) to reconnect the dual
tree and update the structure.

Each edge change in the tree calls a constant num-
ber of operations taking O(log n) time. This concludes
the description of the algorithm to move the source
along a single edge. We summarize in the following
lemma:

v u

Figure 2. As the blue tree expands, the set of green edges could
intersect itself and separate into multiple components. Here, the
blue subtree (rooted at v) wrapped around the torus, and the set of
green edges is shown as two disconnected cycles in the dual which
separate the red subtree from the blue subtree.

Lemma 3.1. Sp-trees in planar graphs can be repre-

sented in such a way that the sp-tree rooted at u can

be changed to the sp-tree rooted at a neighbor of u in

O(k log n) time, where k is the number of edges entering

or leaving the trees. In this representation, a shortest

path distance from the root can be computed in O(log n)
time. �

3.2 Graphs of genus g. The algorithm in the primal
case does not immediately extend to genus g graphs,
since the dual graph (G \ T )∗ is no longer a tree.
Without this tree structure, the set of green edges can
become more complicated than a path in the dual, and
finding tense edges is harder. For example, consider
the case when the graph is on the torus. Initially,
the blue subtree is divided from the red subtree by
a cycle of green edges. However, as the blue subtree
grows, it is possible for the blue to meet at other places,
and the green boundary splits into different connected
components. See Figure 2.

Our algorithm for graphs of genus g is identical to
the planar algorithm on the primal data structure. How-
ever, the dual structure is necessarily more complicated,
since we no longer have a tree in the dual. (Through-
out the algorithm, we consider the edge (uv)∗ as part of
(G \ T )∗ to simplify the algorithm.) For each dual edge
xy∗ corresponding to an edge xy that is not in T , we
maintain the tenseness of −→xy and −→yx.

Decompose the edges of (G \T )∗ ∪ (uv)∗ as follows.
Iteratively delete all edges of degree 1. Denote the
deleted edges as F ∗, and note that F ∗ is a forest in G∗.
After the edges F ∗ have been deleted, we have a set of
paths, called cut paths, that meet at vertices of degree
≥ 3. Denote these cut paths as P ∗ = {π1, π2, . . . , πk},
where each πi is a path between two vertices of degree
≥ 3. Euler’s formula implies that k = O(g) (see [5,
Lemma 4.2]).



The set of green edges, or primal edges whose
endpoints are not monochromatic, are again those edges
that could potentially become tense. All the green
edges are dual to edges in P ∗. To see this, note that
P ∗ bounds two topological disks, one containing all
the blue vertices and the other containing all the red
vertices. For any edge xy∗ ∈ F ∗, the edge xy cannot
have endpoints of different colors, since its endpoints
are in the same face. Therefore, P ∗ must contain the
dual of every green edge. Moreover, any path πi ∈ P ∗

has all the edges dual to either monochromatic edges or
to green edges.

Each path πi, along with any components of F ∗

which are rooted along πi, is put into a self adjusting
top tree Ti, where πi is the top level path. We also
maintain two linked lists of pointers representing the
current boundary of the red and blue faces. For each πi

on the boundary of a face, a pointer in the linked list
for that face points to the corresponding tree Ti. These
pointers appear in the linked list in the same order that
the paths appear along the boundary. Note that it is
possible for a path to bound the same region on both
sides; the linked list will simply contain two pointers to
the same tree. See Figure 3.

The operations on the dual structure are:

1. Cut(e) and Join(e) are identical to the planar
operations.

2. AddBoundary(∆) adds ±∆ to the tension of every
edge that borders both the red and the blue faces.
(Again, we add +∆ to the orientation going from
red to blue, and −∆ to the orientation from blue
to red.)

3. MinBoundary returns the edge with maximum
tenseness among edges that border both faces..

To implement MinBoundary, we search both linked
lists in O(g) time to find the cut paths that border both
regions; this is the candidate list of green edges. We
can find the edge in each cut path with highest tension
in O(log n) time by querying the appropriate Ti with
MinPath. Thus, it takes O(g log n) time to find the edge
−→xy that becomes tense first.

To implement AddBoundary, we again search both
linked lists in order to find the cut paths that contain
green edges. These are the only trees that need to
be updated, since edges with monochromatic endpoints
have constant tension. Each of the self adjusting
top trees can update tensions in O(log n) time using
AddPath, giving a bound of O(g log n) time for updating
all of the cut paths.

Now we describe the algorithm. We first call
MinBoundary to find the first tense edge −→xy. Let ∆

be the amount that s must move along e in order for −→xy
to become tense.

In the primal sp-tree, we can update the distances
using AddSubtree(∆) to u’s subtree (the red vertices),
and AddSubtree(−∆) to v’s subtree (the blue vertices).
We then call AddBoundary with a value of 2∆. We also
need to update the sp-tree. This is done using Cut(−→wy)
to cut y out of the red tree, where −→wy is the red edge
that connects y to the s in the sp-tree. Then Join(−→xy)
reconnects y and its subtree to the source s.

We also have to update the dual structure. The
dual edge −→yw∗ is now a green edge, since w is still red
and y is now blue. The endpoints of −→wy∗ are either in
F ∗ or are directly on some path πj , since we know that
wy was in the sp-tree. Find the unique (and possibly
empty, if the vertex is on some πj) path in F ∗ connecting
each endpoint of −→wy∗ to the paths P ∗ in O(log n) by
simply splaying up the self adjusting top tree that they
belong to until reaching the top level path. Denote these
(possibly empty) paths as π′ and π′′.

We call expose to make π and π′ the top level
in their respective trees, and then we combine them
into one path π using Join(−→wy∗). We now insert
π into the boundaries of the two faces in our linked
lists. In addition, the path πi that −→xy cut across is no
longer a boundary, so we must update the tree for that
component and remove it from the boundary lists. It
is also possible that π intersects one or two paths πj ; if
so, those trees must be subdivided at the appropriate
location using Cut.

We update the red face’s linked list first by cutting
(if necessary) the paths that the endpoints of π subdi-
vided. We then remove all of the pointers in the linked
list that were between those endpoints, since they gave
the boundary of the subtree rooted at y that is now
blue and therefore it is no longer a boundary. Note that
this automatically removes the old path πi from the
boundary, since π necessarily either blocks or divides
that path.

For the blue face’s linked list, we must add in any
of the paths πk that were removed from the red list. We
also add in the self adjusting top tree for π, since it now
borders the blue face.

Altogether, updating the linked lists can be done
in O(g) time, since we traverse each list at most twice
while cutting out and adding in links to the appropriate
cut paths.

This finishes the description of the algorithm when
moving along one edge. We summarize in the following
lemma:

Lemma 3.2. Sp-trees in graphs on a surface of genus g
can be represented in such a way that the sp-tree rooted

at u can be changed to the sp-tree rooted at a neighbor
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Figure 3. An example of the algorithm progressing. On the left, the alterations are shown on the surface on the torus, and on the right,
they are shown on the polygonal schema obtained by cutting along the initial cut locus of u. As new edges become tense, the set of cut
paths alters, but always separates the blue subtree from the red subtree.

of u in O(kg log n) time, where k is the number of edges

entering or leaving the trees. In this representation, a

shortest path distance from the root can be computed

in O(log n) time. �

4 Moving the root along a face

4.1 Planar graphs. Consider the case when G is a
plane graph, and we want to maintain the sp-tree as
the root moves along a face f . Klein [9] noted two
key facts. First, each edge can enter and leave the tree
a constant number of times. For graphs with unique
shortest paths, this can be seen via a relatively simply
crossing argument. (Klein shows this also in general if
one maintains a left-most sp-tree.) Also, using standard
techniques, the graph can be assumed to have bounded
degree, and then one can use persistence [4] to store
and search any previous versions of the sp-tree. (This
increases the required space to O(n log n).) With these
two observations and Lemma 3.1, the following result is
obtained.

Theorem 4.1 (Klein [9]). Let G be a plane graph

with n vertices, and let be f a face of G. With O(n log n)
preprocessing time, a shortest path distance from any

vertex on f to any other vertex can be found in O(log n)
time.

4.2 Graphs of genus g. Let G be a graph embedded
in a surface of genus g. We are interested on maintaining
the sp-tree as the root moves along a face f . We first
show a bound on the number of times that an edge can
enter or leave the sp-tree.

Lemma 4.1. As the root of the sp-tree moves along f ,

each edge enters and leaves the sp-tree O(g) times.

Proof: Let e be an edge in G, and let N be the
surface obtained by contracting e to a point e∗ and f
to a point f∗. Consider all the shortest paths from
vertices in f to any of the endpoints of e. In N , these
shortest paths define O(g) distinct homotopy classes of
paths with endpoints e∗ and f∗. This follows from [2,



Lemma 2.1], since we can combine pairs of pairwise non-
homotopic paths to get a set of pairwise non-crossing,
non-homotopic loops with basepoint f∗.

If we consider all the shortest paths from vertices
on f to an endpoint of an edge e, we know that e = uv
will enter or leave the sp-tree when the shortest path
from w ∈ f to v uses e and the shortest path from
the neighbor of w on f does not use e. In a homotopy
class, the edge e cannot switch from being in and out of
the shortest paths more than constant number of times,
since a homotopy class of paths forms a planar graph.

Note that the homotopy classes cannot interleave,
that is, all the shortest paths that have the same
homotopy class in N appear consecutively as we walk
along f . Indeed, any two paths in the same homotopy
class, together with a piece f ′ of f and e define a
topological disk, and it cannot be that a path in a
different homotopy class has an endpoint in the piece
f ′.

Since there are at most O(g) homotopy classes, each
of which occurs as a block, and in each class, an edge
comes in and out O(1) times, the result follows. �

Since we take O(g log n) time each time we update
the tree, this gives O(g2n logn) time total to update all
the trees over the course of the algorithm. Again, we
can use standard techniques to convert to a graph with
bounded degree, and use persistence [4] to store and
search any previous versions of the sp-tree. Regarding
the space bounds, during the process, we need O(gn)
space to maintain the (dual) structures. However, for
answering distance queries, we only need to store the
primal structure, and therefore, the final data structure
uses O(gn log n) space. With these two observations
and Lemma 3.2, we obtain our main result.

Theorem 4.2. Let G be a graph with n vertices em-

bedded in a surface of genus g, and let be f a face of G.

With O(g2n log n) preprocessing time, a shortest path

distance from any vertex on f to any other vertex can

be found in O(log n) time.

5 Computing shortest non-separating and
non-contractible cycles

In this section we consider the problems of finding a
shortest non-separating and a shortest non-contractible
cycle in an orientable combinatorial surface M . The use
of our technique on maintaining shortest path trees is
condensed in the following lemma.

Lemma 5.1. Let α be a simple cycle or arc in M , and

let Cross1(α) be the set of cycles that cross α exactly

once. A shortest cycle in Cross1(α) can be obtained in

O(g2n logn) time.

Proof: Consider the surface obtained by cutting M
along α: each vertex v in α gives rise to two vertices
v′, v′′, and two boundary arcs or cycles α′, α′′. Let N
be the surface obtained by gluing topological disks to
the boundaries that contain α′ and α′′. (If α is an arc,
then α′ and α′′ are contained in a single boundary.) A
cycle in M that crosses α once at a point v becomes
a path in N connecting v′ to v′′. Thus, a shortest
cycle that crosses α once at v is a shortest path that
connects v′ to v′′ in N , and vice versa. Since all the
points v′, with v ∈ α, belong to a face of N , we can
use Theorem 4.2 to find in O(g2n logn) time a closest
pair (v′0, v

′′

0 ). Computing the shortest path from v′

0 to
v′′0 gives the result. �

Note that if α is separating, then Cross1(α) = ∅
because any cycle crosses α an even number of times.
We also use that all the cycles in Cross1(α) are non-
contractible. This is due to the fact that a contractible
cycle C is a separating cycle, and any cycle or arc must
cross C an even number of times.

5.1 Shortest non-separating cycle. A shortest
non-separating cycle in M is also non-separating in the
surface obtained by attaching disks to the boundaries.
Therefore, we only need to consider surfaces without
boundary.

Cabello and Mohar [1] have shown how to construct
in O(gn log n) time a set S of O(g) simple loops with
the property that a shortest cycle in

⋃
`∈S Cross1(`) is a

shortest non-separating cycle. Since S consists of O(g)
loops, we can apply the previous lemma to Cross1(`)
for each ` in S and take the globally shortest cycle. We
summarize:

Theorem 5.1. Let M be an orientable surface, possi-

bly with boundary, of complexity n and genus g. We

can find a shortest non-separating cycle in O(g3n logn)
time.

5.2 Shortest non-contractible cycle. The main
approach is to find a curve whose removal decreases
the genus or number of boundaries of the surface, and
moreover, it has the property that there is a shortest
non-contractible cycle intersecting it at most once. The
main tool to prove the following results is an exchange
argument. We omit their proof.

Lemma 5.2. Let M be an orientable surface.

(a) Let `x be a shortest non-contractible loop with

given basepoint x ∈ M . There is a shortest non-

contractible cycle in M that crosses `x at most

once.



(b) Let δ be a boundary cycle in M and let α be a

shortest non-contractible arc with endpoints in δ.
There is a shortest non-contractible cycle in M that

is homotopic to δ, or that crosses α at most once.

(c) Let α be a shortest arc connecting two different

specified boundaries of M . There is a shortest non-

contractible cycle in M that crosses α at most once.

The next result summarizes the time needed to find
the curves described in the previous lemma.

Lemma 5.3. Let M be an orientable combinatorial

surface of complexity n.

(a) Given a basepoint x, we can find in O(n log n) time

a shortest non-contractible loop with basepoint x
and multiplicity two.

(b) Given a boundary δ, we can find in O((g+b)n log n)
time a shortest cycle homotopic to δ.

(c) Given a boundary δ, we can find in O(n log n) time

a shortest non-contractible arc with endpoints in δ,
multiplicity two, and edge-disjoint from δ.

(d) If M has two or more boundaries, we can find in

O(n log n) time a shortest arc with endpoints in

different boundaries, multiplicity one, and edge-

disjoint from all boundaries of M .

Proof: (a) See Erickson and Har-Peled [5, Lemma
5.2].

(b) Construct a cross-metric surface N using a cylinder
with a boundary ∂ having 3 edges and another
boundary ∂′ that gets glued to δ. Assign infinite
length to each edge not in ∂ ′. Since N has
complexity O(n) and ∂ consists of three edges, an
algorithm of Colin de Verdière and Erickson [3,
Theorem 6.1] finds in O((g + b)n logn) time a
shortest cycle homotopic to ∂ in N . This is the
desired cycle in M .

(c) Contract δ to a point p and construct a shortest
non-contractible loop with basepoint p as in item
(a). This is the desired arc in M .

(d) Select a boundary δ of M , contract it to a point
p, and construct in O(n log n) time a shortest path
tree from p. Let q be the closest point to p among
vertices v in the boundary of M . The shortest path
from p to q in M is the shortest arc connecting the
boundary δ to any other boundary, and it does not
use any edge from any boundary.

�

Theorem 5.2. Let M be an orientable surface of com-

plexity n, genus g, and b boundaries. We can find a

shortest non-separating cycle of M in O((g+b)g2n logn)
time.

Proof: We give a recursive algorithm that reduces
either the genus or the number of boundaries of the
subproblems. The recursion stops when the subproblem
is a topological disk. We distinguish three cases;
N denotes the surface in the subproblem and m its
complexity. The genus of N is bounded by g.

(a) If N is a surface without boundary, we choose a
point x ∈ N and find a shortest non-contractible
loop `x through x. Because of Lemma 5.2(a),
there is a shortest non-contractible cycle in N that
crosses `x at most once. Consider the surface
N ′ = N \`x, and return a shortest cycle among: the
cycles Cross1(`x) and the shortest non-contractible
cycle in N ′. Note that if `x is separating, then N ′

has two connected components and Cross1(`x) =
∅. From Lemmas 5.1 and 5.3(a), it follows that we
spend O(g2m log m) time in N , plus the time used
for N ′.

(b) If N has exactly one boundary δ, we find a short-
est non-contractible arc α with endpoints in δ. Be-
cause of Lemma 5.2(b), there is a shortest non-
contractible cycle in N that crosses α at most
once, or it is homotopic to δ. Consider the surface
N ′ = N \ `x, and return a shortest cycle among:
the cycles Cross1(`x), a shortest cycle homotopic
to δ, and a shortest non-contractible cycle in N ′.
From Lemmas 5.1 and 5.3(b-c), it follows that we
spend O(g2m log m) time in N , plus the time used
for N ′.

(c) If N has two or more boundaries, we find a short-
est arc α connecting two different boundaries. Be-
cause of Lemma 5.2(c), there is a shortest non-
contractible cycle in N that crosses α at most once.
Consider the surface N ′ = N \ `x, and return a
shortest cycle among: the cycles Cross1(`x) and a
shortest non-contractible in N ′. From Lemmas 5.1
and 5.3(d), it follows that we spend O(g2m logm)
time in N , plus the time used for N ′.

This finishes the description of the algorithm. Note that
at most O(g + b) recursive subproblems are considered:
starting from a surface M , we encounter O(b + 1) times
cases (a) or (c), until we first obtain pieces with one
boundary, and then we repeatedly encounter O(g) cases
(b-c) that maintain each component with one or two
boundaries and decrease their genus. The arcs and
loops that are used for cutting can be obtained from



Lemma 5.3, which have multiplicity at most two and
are edge-disjoint from the boundary. It follows that any
surface considered in a subproblem has at most four
copies of an edge of M . Thus, m = O(n), and in each
piece we spend O(g2n log n) time. �
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