CS314: Algorithms

Homework 1, due Monday, Feb. 2 at the beginning of class

This homework will be submitted in written format. Remember, you can submit homework in pairs; just be sure both names are written on all pages submitted.

Also recall that when asked to design an algorithm, you must also include a proof of correctness and running time for that algorithm. In particular, if the problems asks you to design an algorithm with a particular run time, you must still analyze your algorithm to prove that it meets that running time.

Required Problems

1. Consider the following sorting algorithm:

 STUPIDSORT(A[0..n-1]):
 if n = 2 and A[0] > A[1]
 swap A[0] and A[1]
 else if n > 2
 m ← ⌊2n/3⌋
 STUPIDSORT(A[0..m-1])
 STUPIDSORT(A[n-m..n-1])
 STUPIDSORT(A[0..m-1])

 (a) Prove that STUPIDSORT actually sorts its input.

 (b) State a recurrence (including the base cases - there are two of them!) for the number of comparisons executed by STUPIDSORT.

 (c) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.] Does the algorithm deserve its name?

2. A subsequence of a sequence A consists of a (not necessarily contiguous) collection of elements of A, arranged in the same order as they appear in A.

 Describe and analyze a simple recursive algorithm to compute, given two sequences A and B, the length of the longest common subsequence of A and B. For example, given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5, the length of the longest common subsequence ALRIT.

3. Chapter 5, Exercise 2 from the textbook:

 Recall the problem of finding the number of inversions. As in the text, we are given a sequence of numbers a_1, \ldots, a_n, which we assume are all distinct, and we define an inversion to be a pair $i < j$ such that $a_i > a_j$.

 We motivated the problem of counting inversions as a good measure of how different two orderings are. However, one might feel that this measure is too sensitive. Let’s call a pair a significant inversion if $i < j$ and $a_i > 2a_j$. Give an $O(n \log n)$ time algorithm to count the number of significant inversions.
4. Chapter 5, Exercise 6 from the textbook:

Consider an \(n \)-node complete binary tree \(T \), where \(n = 2^d - 1 \) for some \(d \). Each node \(v \) of \(T \) is labeled with a real number \(x_v \). You may assume that the real numbers labeling the roots are all distinct. A node \(v \) of \(T \) is a local minimum if the label \(x_v \) is less than the label \(x_w \) for all nodes \(w \) that are joined to \(v \) by an edge.

You are given such a complete binary tree \(T \), but the labeling is only specified in the following implicit way: for each node \(v \), you can determine the value \(x_v \) by probing the node \(v \). Show how to find a local minimum of \(T \) using \(O(\log n) \) probes to the nodes of \(T \).

5. Extra Credit problem: Chapter 5, Exercise 7 from the textbook:

Now suppose you’re given an \(n \times n \) grid graph \(G \). (An \(n \times n \) grid graph is just the adjacency graph of an \(n \times n \) chessboard. To be completely precise, it is a graph whose node set is the set of all ordered pairs of natural number \((i, j)\) where \(1 \leq i \leq n\) and \(1 \leq j \leq n\); the nodes \((i, j)\) and \((k, l)\) are joined by an edge if and only if \(|i - k| + |j - l| = 1\).

We use some of the terminology of the previous question. Again, each node \(v \) is labeled by a real number \(x_v \); you may assume that all these labels are distinct. Show how to find a local minimum of \(G \) using only \(O(n) \) probes to the nodes of \(G \). (Note that \(G \) has \(n^2 \) nodes.)