Announcements

HW 0: average ~28
- HW due Friday
(you should have already started!)
Representing Graphs

How big can \(m \) be (in terms of \(n \))?
Anyone we find it or can't search. Search out from there until?

How?

Is there a path from

s to t connected. Given a network, are

Algorithms on graphs
Breadth First Search (BFS)

- L0
- L1 - at distance 2 from S
- L2 - at distance 3 from S
- L3 - at distance 4 from S

Who is connected to S?
Exercise: What does the BFS tree look like for this graph?
If in a BFS tree, can follow the path from a vertex in a level to a vertex in the BFS tree. Why? If there is a level then + in the BFS tree. Use induction on a vertex in Lij. A path from a vertex in Li goes through if it is in the BFS tree. There is a path from it to it + any it. Property: For each v in the BFS tree.
Pseudo-code: (From text)

1. Initialize empty list L. Set $\text{counter} \to 0$.
2. While $L \neq \emptyset$ do:
 a. $L \leftarrow \text{BFS}(G, \{v\})$ (Get next vertex).
 b. $L \leftarrow \text{BFS}(G, \{v\})$ (Get next vertex).
3. For each vertex $v \in V$ do:
 a. $\text{DS} \leftarrow \{\emptyset\}$.
 b. For each edge $e = (u, v) \in E$ do:
 i. If $\text{DS} e \notin \text{DS} \Rightarrow \text{DS} \leftarrow \text{DS} \cup e$.
 j. Add vertex v to DS.
4. For each vertex $v \in V$ do:
 a. If $\text{DS} v = \text{false}$ then:
 i. Mark vertex v as discovered.
 b. Add vertex v to DS.

Note: The pseudo-code is incomplete and lacks necessary details for full understanding.
For each vertex, list all adjacent edges.

\[\text{deg}(v) = \Omega(n) \]

Case 1: \(\geq 3 \) edges

Next, for loops - why?
Let \(L \) be a linear functional. Then for any \(\lambda \) in \(L^* \), there is a corresponding \(x \) in \(X \) such that \(\lambda(x) = \langle x, \lambda \rangle \). Thus, \(L \) can be identified with \(X \). This identification is unique up to a constant factor. Hence, \(L \) is isomorphic to \(X \).