CS 314 - Network Flow

Announcements

- Turn in HW
- Next HW is posted (written, so due next Wed.)
- Office hours tomorrow changed
 - 10(ish) to noon
Goal: Model transportation networks
(from "Secret" government pub in 1955)
More formally:

- A directed graph $G = (V, E)$
- Each edge has a maximum capacity c_e
- Two special vertices $s, t \in V$
 - s is the source
 - t is the sink

Note: s has no incoming edges, and t has no outgoing edges.
Think of edges as pipes, roads, network connections, etc...

The goal is to "push" as much flow from s to t.

$$V(F) = 20 + 10 = 30$$
Formally:

A flow is a function \(f : E \rightarrow \mathbb{R}^+ \) (some amount sent along each edge) such that:

1. Capacity constraint: \(\forall e \in E, \ 0 \leq f(e) \leq c_e \)

2. Conservation constraint: \(\forall v \in V, \text{ if } v \neq s \text{ or } t \)
 \[
 \sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e) \quad \text{for } v \neq s \text{ or } t
 \]

\[f_{\text{in}}(v) \quad f_{\text{out}}(v) \]
Notation: for any \(S \subseteq U \),
\[
\text{f}^{\text{out}}(S) = \sum_{e \text{ out of } S} f(e)
\]
(\(\text{f}^{\text{in}}(S) \) similarly)
Maximum Flow Problem

- The value of a flow is $\sum_{e \text{ out of } s} f(e) = \sum_{e \text{ into } t} f(e)$

Goal: Find flow with maximum value.

(Arrange the traffic as efficiently as possible.)
Basic obstacle

For any $S \subseteq V$ with $s \in S$, $t \in V - S = T$, all flow must leave S and enter T.

So flow \leq sum of edge capacities from S to T (this is called (S,T)-cut)
Computing Flow

Ideas?

And an s to t path + push as much flow as we can

Now- no s to t paths
Problem: We can get stuck!

So we may need to "unpush" flow.

Def: The residual graph G_f of G with respect to a flow f is a graph with:

- G_f has the same vertex set as G
- For each edge (u,v) in G with $f(u,v) < C_{uv}$, add an edge to G_f from u to v with weight $C_{uv} - f(u,v)$
- If $f(e) > 0$ where $e = (u,v)$, add edge vu in G_f of value $f(e)$
Ex:

\[G + f \]

\[G_f \]
So G_f does have an s-to-t path!

(Notice that path “unpushes” some flow.)

We find s-to-t path in G_f by either increase or decrease flow along each edge in that path.
Claim: New flow f' is a valid flow.

pf: Need to verify 2 things:

1. Capacity constraint: only changed flow for edges on path P.

 Let $e = (uv) \in P$.

 $w(\text{bottleneck edge on } P) = (c_e - f(e))$

 Let bottleneck edge in P = min weight edge of P in G_f.

 So adding $w(\text{bottleneck})$ to every edge in P cannot exceed capacity of each edge.
2. Conservation before, $in = out$ for every vertex.

The only flow change is along P.

Change each vertex in P along 2 of its edges, by the same amount.

So flow in is still = flow out.
Our Algorithm: [Ford-Fulkerson 1956]
- Find a path from s to t in G_f
- Push flow along s-t path
- Repeat until G_f contains no s-t paths
Pseudo code

MaxFlow(G):
\[f(e) \leftarrow 0 \quad \text{for } e \in E \]
\[G_f \leftarrow G \]

While there is an s-t path in \(G_f \):
\[P \leftarrow \text{s-t path in } G_f \]
\[f' = \text{Augment}(f, P) \]
\[f \leftarrow f' \]
Update \(G_f \)

Return \(f \)
Augment \((f, P)\):
\[\begin{align*}
&b \leftarrow \text{bottleneck edge of } P \\
&\text{for each edge } (u, v) \in P \\
&\text{if } e = (u, v) \text{ is forward in } G \\
&\quad f(e) \leftarrow f(e) + b \\
&\text{if } e = (v, u) \text{ is backwards in } G \\
&\quad f(e) \leftarrow f(e) - b \\
&\text{return } f
\end{align*}\]
We know this returns a valid flow, but haven't shown it returns the maximum flow.

Def: An \(s-t \) cut \((S, T) \) is a partition of \(V \) into 2 sets \(S, T \) with \(s \in S \) and \(t \in T \).

The capacity of a cut \(c(S, T) = \sum_{e \text{ out of } S} c_e \)
Strategy: 2 things

1. Thm: let \(f \) be any s-t flow, and \((S, T)\) any s-t cut.
 Then \(v(f) = c(S, T) \)

2. Given a flow \(f \) where there is no s-to-t path in \(G_f \), we can find a cut \((S^*, T^*)\) with:
 \[v(f) = c(S^*, T^*) \]
 max flow, min cut
First, a lemma:

Lemma: Let f be any $s-t$ flow, and (S, T) any $S-T$ cut. Then $v(F) = f^{out}(S) - f^{in}(S)$.

Proof: