Announcements

- HW due (written) next Wednesday in class
Network Flow

- A directed graph $G = (V, E)$
- Each edge has a maximum capacity c_e
- Two special vertices $s, t \in V$
 - s is the source
 - t is the sink

Note: s has no incoming edges,
t has no outgoing edges.
Formally:

A flow is a function \(f: E \rightarrow \mathbb{R}^+ \) (some amount sent along each edge) such that:

- capacity constraint: \(\forall e \in E, \ 0 \leq f(e) \leq c_e \)

- conservation constraint: \(\forall v \in V, \ \text{if } v \neq s \text{ or } t, \)
 \[\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e) \]

\(f^{\text{in}}(v) + f^{\text{out}}(v) \)
So: graph
A flow in this graph:

An \((s, t)\)-flow with value 10. Each edge is labeled with its flow/capacity.
\textbf{Def.} An s-t cut is a partition of \(V \) into 2 sets \((S, T) \) with \(s \in S \), \(t \in T \).

The capacity of a cut \(c(S, T) = \sum_{e \text{ out of } S} c_e \).
Our algorithm (in pictures)

Consider some flow:

Form the residual graph G_f (of G with respect to flow f):
Find a path in this residual graph, and let $F =$ bottleneck edge.

Consider the edges in this path, and update the original flow.
path in G_f:

\[
\begin{align*}
\text{new flow: (in } G)\end{align*}
\]

\[
f'(u \rightarrow v) = \begin{cases}
 f(u \rightarrow v) + F & \text{if } u \rightarrow v \text{ is in the augmenting path} \\
 f(u \rightarrow v) - F & \text{if } v \rightarrow u \text{ is in the augmenting path} \\
 f(u \rightarrow v) & \text{otherwise}
\end{cases}
\]
Pseudo code

Max flow \((G)\):
\[
\begin{align*}
& f(e) \leftarrow 0 \quad \forall e \in E \\
& G_f \leftarrow G
\end{align*}
\]

while there is an s-t path in \(G_f\)
\[
\begin{align*}
& \text{Let } P < \text{s-t path in } G_f \\
& f' = \text{Augment}(f, P) \quad \leftarrow \text{update flow using path } P \text{ in } G_f \\
& f \leftarrow f' \\
& \text{Update } G_f \\
& \text{return } f
\end{align*}
\]

Need to show that this algorithm gives maximum flow
Strategy: 2 things

1. Theorem: let f be any s-t flow, and (S, T) any s-t cut.

 Then $v(f) = c(S, T)$

2. Given a flow f where there is no s-t path in G_f, we can find a cut (S^*, T^*) with:

 $v(f) = c(S^*, T^*)$.

 max flow min cut
First, a lemma:

Lemma: Let f be any s-t flow, and (S, T) any S-T cut. Then $v(F) = f^{out}(S) - f^{in}(S)$.

Proof: By definition: $v(f) = f^{out}(S)$ also $f^{in}(S) = 0$

So: $v(F) = f^{out}(S) - f^{in}(S)$

For any other $v \in S$, $f^{out}(v) = f^{in}(v)$

So $v(F) = \sum_{v \in S} (f^{out}(v) - f^{in}(v))$
\[v(f) = \sum_{v \in S} (f^{out}(v) - f^{in}(v)) \]

Think about edges in \(S \).
Any edge with 2 endpoints in \(S \) appears twice in sum.
Any edge out of \(S \) appears once, in a \(f^{out} \) term.
Any edge into \(S \) appears once, in a \(f^{in} \) term.

So:
\[\sum_{v \in S} (f^{out}(v) - f^{in}(v)) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in } S} f(e) \]
\[= f^{out}(S) - f^{in}(S) \]
Thm: Let f be any s-t flow, and (S, T) any s-t cut.

Then $\nu(f) \leq c(S, T)$

pf:

$\nu(f) = f^{out}(S) - f^{in}(S)$ (by lemma)

$\leq f^{out}(S)$

$\leq \sum_{e \text{ out of } S} c(e)$

$= c(S, T)$
Thm: Given a flow f where there is no s-t path in G_f, we can find a cut (S^*, T^*) with:
$v(f) = c(S^*, T^*)$.

pf: Consider G_f.
No s-t path, so let $S = \{ v \in V \mid G_f \text{ has an } s \text{ to } v \text{ path} \}$
(Note: $t \notin S$)

let $T = V - S$

Diagram:

G_f

S

T

s

t
Consider $e \in G$.

PF (cont.) Consider $e \in G$ going from S to T, $e = (u, v)$.
If $v \in T$, so $f(e) = C_G$ (or else v would be reachable in G_f).

Consider $e' \in G$ from T to S, $e' = (u', v')$ where $u' \notin S$, so reversed edge.

$\Rightarrow f(e') = 0$.

$\Rightarrow v(f) = f^{out}(S) - f^{in}(S) = \sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e) = \sum_{e \text{ out of } S} C_e - \sum_{e \text{ into } S} 0 = C(S, T)$.
Runtime: (A first try)

- In each loop, flow increases by at least 1.
- Each time in loop takes $O(m+n)$

$\Rightarrow O(m|f|)$

$value of max flow
Ideas for improving:

- Choose path with largest bottleneck edge
- Choose path with min. # of edges

both lead to "good" poly...