CS 314 - Shortest paths

Announcements
- Oral grading tomorrow
Shortest paths in a graph. (4.4)

Suppose we have $G=(V,E)$ and each edge $e \in E$ has a length l_e. Here, we'll assume G is directed: \overrightarrow{luv}.

Goal: Given two vertices, find shortest path between them.
We'll actually do something harder:

- Given a source vertex s, compute shortest path from s to every other vertex.

Greedy idea:

Start with a set S
(initially $S = \emptyset$)

At each step, grow out from s, taking next shortest path from s to a new vertex and adding that to S.
Greedy Idea:
Start with source (here, St. Louis)
Let $S = \emptyset$
Consider edges going out from S.

At each step, grow out from S, taking next (shortest) path from S to a new vertex & adding that to S.
Pseudo code: Dijkstra's algorithm

(Actually ley 2002, Gray, Johnson, Ladew, Meaker, Petry + Sel'kov)

SPtree(G, s):
S ← \{s\}
D[s] ← 0
T ← Ø

while S ≠ V
 select node v with at least one edge into S
 where d'(v) = \min_{u \in S} \{ D[u] + lw \} is minimized
 S ← S ∪ \{v\}
 D[v] ← d'(v)
 T ← T ∪ \{(u,v)\}
Claim: At each stage, \(T \) is a set of shortest paths from \(s \) to \(S \).

pf: Induction on \(|S|\).

Base case: \(|S| = 1\) so \(S = \{s\} \), \(T = \emptyset \).

Ii: Suppose true if \(|S| < k\).

IS: Consider next edge \((u,v)\) added.

\(T \) contains shortest path to \(u \) by Iii.
(PF continued)

Suppose the path to v through u isn't the shortest path.

Then shortest path must use a different route, P.

We know P must leave S somewhere; let (x, y) be the first edge on P leaving S.

Then distance from s to y is less than distance from s to v.

But then algorithm would have added (x, y) instead of (u, v).
Improved Pseudo code

Dijkstra(G, s):

Create array D[v], initially all ∞
S ← {s}
D[s] ← 0
for every edge (s, u)
 set D[u] ← ∞

while S ≠ V
 select node v ∈ S with D[v] minimized
 S ← S ∪ {v}
 for each edge (v, u)
 if D[v] + ℓ(u,v) ≤ D[u]
 D[u] ← D[v] + ℓ(u,v)
Runtime:

If D is just an array:
\[
O(n^2 + \sum_{\text{ev}} d(u))
\]
\[
= O(n^2 + n.m) = O(n.m)
\]

If we use a heap to store distances \(O(\log n)\) time each time we extract min or update priority:
\[
O(n \log n + m \log n) = O(m \log n)
\]