CS 314 - Divide + Conquer

- Oral grading tomorrow
- New homework out tomorrow or Friday
- Comments on HW1:

Proof of correctness,
Closest Pair of Points

Let P be a set of points in \mathbb{R}^2. Let $P = \{p_1, \ldots, p_n\}$, and $p_i = (x_i, y_i)$.

$\lVert p_i p_j \rVert = \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2}$

$O(n^2)$ time

Q: What is the closest pair of points?

$O(n^2)$ \leftarrow naive
Divide + Conquer Approach
Designing an algorithm

- Assume no 2 points have same x- or y-coord.
- Start by having 2 lists for points P:
 - P_x - points sorted by x-coordinate
 - P_y - points sorted by y-coordinate

(make sure these have indices of position in other list, so we can keep track easily)
So: Set up recursion

\(O(n \log n) \): At beginning, sort \(P \) twice to get \(P_x \) and \(P_y \)

- Find dividing line \(l \): how? look in \(P_x \) \([n/2]\)

\(O(n) \): Compute \(R \) and \(L \) - points to left and right of dividing line

\(O(n) \): Compute \(R_x \) and \(R_y \), \(L_x \) and \(L_y \) - already ordered in \(P_y \), so \(O(n) \)

- Recursively compute closest distance in \(JR \) and \(J_L \)

- Now have \(S_R \) and \(S_L \)
Prop: Let $\delta = \min \{\delta_R, \delta_L\}$. If there is $p \in \mathbf{R}$ and $q \in \mathbf{L}$ with $d(p, q) < \delta$, then p and q must be within $\frac{\delta}{2}$ of our dividing line l.

Proof: Suppose $p = (p_x, p_y)$ and $q = (q_x, q_y)$ exist. Let our line l be $l = x^*$. We know $q_x - p_x < \delta$ and $p_x \leq x^* \leq q_x$. Thus $\delta > q_x - p_x \geq p_x - x^*$.

$\Rightarrow \delta > p_x - x^*$, so p_x is within $\frac{\delta}{2}$ of l. \[\square \]
So - only need to search a "narrow" band around z.

Does this always help? No: Yes

Yes: No
One more idea:

Let S be points of P near l, sorted by y-coordinate.

$O(n)$

Key Lemma: If $s, s' \in S$ are within 8 of each other, then $s + s'$ are within 15 positions of each other in S.

Why??
Proof:

Partition into boxes of size $\frac{8}{2}$

Lines

Suppose we have 2 points inside a box. How far apart are they?

$\frac{8}{2} \geq \frac{8}{2} < 8$

But these 2 points we from same side of d at 8 was min distance!
So at most 1 point per box!

Now consider 2 points more than 15 positions away in S.

Nearest that point could be is 3 "boxes" down.

3 empty rows mean that point is at least $\frac{38}{2} = 19$ away.

So it can't be closer than 19.
Our algorithm:
After constructing S, compute distance between every $s \in S$ and the next 15 elements.

Key Lemma: These are only possible candidates for getting a distance $\leq \delta$

How long does this take?

$O(n \log n) + T(n) = O(n \log n)$

$T(n) = 2T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n \log n)$
Algorithm (sketch) - see p. 230 for pseudocode
- Initial sort + divide P in half
- Two recursive calls (but don't need to sort)
- Compute S & compare each pt to 15 points after it in S
Proof of Correctness:

Induction on n:
Base case - clear
For n points, our IH says \(d_k \) and \(d_x \) are closest distance for points only in \(R \) or \(L \), resp.

By our key lemma we look at all possible points per \(R \) and \(G \) with
\[
d(p, q) < \min(d_k, d_x).
\]

Since closest pair of points are either both in \(L \), both in \(R \), or one on each side, we are done - either our recursive calls found distance correctly, or our scan of \(S \) found it. \(\square \)