Announcements
Huffman codes

Goal: Transmit a message using as few bits as possible.

Use frequency counts (so know the message ahead of time).

Huffman codes: pre-fix free

Why? So we can scan & decode—no ambiguity.
Can visualize as a binary tree

M: 111
I: 10
S: 0
P: 110

When reading string, just follow tree and output letter when you reach a leaf.

Ex: 010111110
 SIMP
Given \(n \) letters plus frequency counts for each letter, find the code minimizing total length:

\[
\sum_{i=1}^{n} f[i] \cdot \text{depth}(i) = \text{cost}(T)
\]
Pseudo code:

Keep characters in min heap, w/priority = to frequency.
L, R, & P keep track of left/right and parent indices.

\textbf{BuildHuffman}(f[1..n]):
\begin{verbatim}
 for i ← 1 to n
 L[i] ← 0; R[i] ← 0
 INSERT(i, f[i])
 for i ← n to 2n - 1
 x ← \textbf{ExtractMin}()
 y ← \textbf{ExtractMin}()
 f[i] ← f[x] + f[y]
 L[i] ← x; R[i] ← y
 P[x] ← i; P[y] ← i
 INSERT(i, f[i])
 P[2n - 1] ← 0
\end{verbatim}
Proof of Correctness:

Lemma: Let \(x \) and \(y \) be the 2 least frequent characters. Then there is an optimal code where \(x \) and \(y \) are siblings and have maximum depth in the tree.

Did proof in class last time.
Thm: Huffman codes are optimal.

pf: Induction on # of letters.

Base case: \(n = 1 \) (or 2) \(\checkmark \)

Inductive hypothesis: Given \(n \) characters, Huffman's alg. is optimal.

Inductive step: \(n \) characters with frequency counts \(f[1..n] \). Without loss of generality, assume \(f[1] \times f[2] \) are least frequent.

By our previous lemma, some optimal tree has \(| < 2 \) as siblings (at deepest level).

Let \(T' \) be the Huffman tree for \(f[3\ldots n+1] \).

\[\rightarrow \text{By IH, cost}(T') \text{ is smallest possible for any such tree.} \]

Create \(T \) by removing leaf \(n+1 \) and replacing it with internal node with 2 children.

Why is \(T \) optimal?
Claim: This is optimal for $f[i...n]$.

$$\text{cost}(T) = \sum_{i=1}^{n} f[i] \cdot \text{depth}(i)$$

$$= \sum_{i=3}^{n+1} f[i] \cdot \text{depth}(i) - f[n+1] \cdot \text{depth}(n+1) + f[2] \cdot \text{depth}(2)$$

$$= \text{cost}(T') + (f[1] + f[2]) \cdot \text{depth}(1) - f[n+1] \cdot \text{depth}(n+1)$$

(know $f[1] + f[2] = f[n+1]$, and depth(1) = depth(n+1) + 1)

$$\Rightarrow = \text{cost}(T') + f[1] + f[2].$$
So \[\text{cost}(T) = \text{cost}(T') + f[i3] + f[2]. \]

Suppose \(T \) was not optimal.

In optimal tree, remove 1 & 2 & get a Huffman tree for 3...n+1.

If do that, get a tree for 3...n+1 that is better than \(T' \).

Contradiction.
Shortest paths in a graph. (4.4)

Suppose we have \(G = (V, E) \) and each edge \(e \in E \) has a length \(l_e \).

Here, we will assume \(G \) is directed: \(u \rightarrow v \).

If given undirected graph, how could we adapt to directed model?

\[O(2|E|) = O(|E|) \]
Goal: Given two vertices, find shortest path between them.

Why? Mapquest!

Idea? BFS - rightides

$\text{distance} = 1$
We'll actually do something harder:

Given a source vertex s, compute shortest
path from s to every other vertex.

The reason — if we don't explore every thing,
we don't know if we've missed a shorter path.
Greedy idea:

Start with a set \(S \).
(Initially \(S = \emptyset \))

At each step, grow out from \(S \), taking next shortest path from \(S \) to a new vertex \(u \) adding that to \(S \).