CS314 - Greedy Algorithms

Announcements

- HW due Friday
- Office hours tomorrow 9-10am
Scheduling to minimize lateness

Single resource + set of n requests for resource J (like last time)

But here, request i has: \(E_1, \ldots, E_n \) deadline \(d_i \), time \(t_i \) to run

(Think jobs on a computer requesting processor time)
Many different ways to optimize.

Here: Allowed to run past deadline, but want to minimize the maximum lateness.

Formally:

Assign s_i to each i.

Let $f_i = s_i + t_i$.

Then lateness $l_i = f_i - d_i$.

Want to minimize $\max_i l_i$.
Example:

Job 1

Job 2

Job 3

Length 1

Length 2

Length 3

$d_1 = 2$

$d_2 = 4$

$d_3 = 6$

How can we schedule?

\[l_1 = 2 \]
\[l_2 = 2 \]
\[l_3 = 0 \]
Greedy Strategies?

- Shortest to longest t_i:
 1: $t_1 = 6$ $d_1 = 6$
 2: $t_2 = 1$ $d_2 = 9$

- Shortest Slack Time $d_i - t_i$:
 1: $t_1 = 10$ $d_1 = 10$ (slack = 0)
 2: $t_2 = 1$ $d_2 = 2$
Instead - earliest deadline first \((EDF)\)

\[
\begin{align*}
\text{Sort by } d_i \text{ (reorder } t_i \text{ accordingly)} \\
f \leftarrow 0 \\
\text{for } i \leftarrow 1 \text{ to } n \\
\quad s[i] \leftarrow f \\
\quad f \leftarrow s[i] + f[i] \\
\text{return } S[1...n] \\
\end{align*}
\]
\(O(n)\)

Runtime? \(O(n \log n)\)

Note - no inverted pairs in our algorithm.
Proof of correctness:

Lemma: All schedules with no inversions and no idle time have same maximum lateness.

pf: Two schedules, both have no inversions and no idle time. Only possible difference is jobs with same deadline in different order. So consider all jobs w/ a deadline d. No matter of order last one finishes at same time. So lateness is same.
Lemma 2: There is an optimal schedule with no idle time.

(obvious)

Lemma: There is an optimal schedule with no inversions (≠ no idle time).

pf: Suppose optimal schedule \(S \) has inversions

\[
\begin{align*}
\text{i} & \quad \text{k} & \quad \text{l} & \quad \text{j} \\
\text{d}_i & > & \text{d}_j
\end{align*}
\]

Want to find an adjacent inversion
If there is inverted pair \(i \) \(j \), can step up job by job from \(i \) to \(j \).
If first adjacent pair along way, done.
If not, eventually get to \(j \) \(\Rightarrow \) must have reached adjacent inversion.

\[
\begin{align*}
&\text{Swap } a \leftrightarrow b; \text{ fewer inversions} \\
&\text{haven't changed any lateness} \\
&\text{besides } a \leftrightarrow b.
\end{align*}
\]

Change only \(f_a \) \(f_b \).

\(a \) finishes at "old" \(f_a \)
\(b \) finishes at time \(f_b \)
\[f_b > f_a \]

Had: \[f_a - d_a \quad d_a > d_b \]

Now: \[f_b - d_a < f_a - d_a \]

Rewritten: a now finishes at \(f_b \) so its lateness is \(f_b - d_a \)
We had \(f_b - d_b \) and \(d_a > d_b \)

So a can't be more late in new schedule than b was in old.
Since \(f_b - d_a < f_b - d_b \)
End of argument:

Swapping inverted pairs can not hurt.

Take O and start swapping at most O(n^2) inverted pairs.

⇒ end with optimal schedule w/ no inverted pairs (no idle time)

apply lemma 1.