Security - Case Study

Announcements

- Midterm will be March 3 (expect review sheet by Thursday)
- Accept resubmissions of paper 1 before spring break
- Paper 2 due Thursday
Testing Lab 2: NetCat

client$ man nc

...
The nc (or netcat) utility is used for just about anything under the sun involving TCP or UDP. It can open TCP connections, send UDP packets, listen on arbitrary TCP and UDP ports, do port scanning, and deal with both IPv4 and IPv6.
Test #1:

Determine if the server is allowing
inbound & outbound traffic on port 80

Step 1: Create a file to send

```
client$ echo "hello" > hi.txt
client$ more hi.txt
hello
client$
```

Step 2: Make a request to port 80

client$ nc server.cs448lab2.up-cs448.isi.deterlab.net 80 < hi.txt
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>501 Method Not Implemented</title>
</head><body>
<h1>Method Not Implemented</h1>
<p>hello to / not supported.
</p>
<hr />
<p></p>
</address>Apache/2.0.54 (Fedora) Server at pc061.isi.deterlab.net Port 80</address>
</body></html>
Equivalent to:

Method Not Implemented

hello to / not supported.

Apache/2.0.54 (Fedora) Server at pc061.isi.deterlab.net Port 80
Alternative: get
(makes a well formed request)

GET /index.html HTTP/1.1
Host: server.CS448Lab2.UP-CS448.isi.deterlab.net
Test 2:

Check if server is allowing inbound or outbound traffic on 8080

Step 1: Open a port for listening on the server

server$ nc -l 80
nc: already in use
server$ nc -l 8080 > output.txt
Step 2: Use the client to send data

client$ more hi.txt
hello
client$ nc server.CS448Lab2.UP-CS448.isi.deterlab.net 8080 < hi.txt

server$ nc -l 8080 > output.txt
server$ more output.txt
hello
Networking Case Study: Dribble, Inc.

Company with the following goals:

* Company plans must be kept secret

* Customer data should be available only to those who fill the order

* However, company analysts may use customer data for statistics

* Releasing sensitive data requires consent of company officials
Policy development

- We need to go from these goals to concrete policies and design.

Specify:

- users
- data classes
- organization of network
- firewall permissions
First principles

(1) Principle of Least Privilege

A subject should only be given privileges necessary to complete its task.
First principles

- Principle of open design
 Security of our system should not depend on secrecy.
First principles

3) Principle of Separation of Privilege:
A system should not grant permission based on a single condition.

access rights - before data is released, must be approved by multiple people with appropriate access rights.
First principles

4) Principle of Fail-Safe Defaults:

Unless subject is given explicit rights, default behavior is to deny access.
Internal Organization - 3 groups

Customer Service Group (CSG)
maintains customer data, interfaces between groups and clients

Development Group (DG)
develops, modifies, and maintains products

Corporate Group (CG)
handles lawsuits, patents, corporate-level work
Internal Organization - Data

Public Data (PD)
available to anyone; product specifications, price information and marketing literature.

Development Data for Existing Products (DDEP)
available only internally to lawyers and developers.

Development Data for Future Products (DDFP)
available to developers only.

Corporate Data (CpD)
available only to corporate officials and lawyers; privileged information about corporate actions.

Customer Data (CuD)
data supplied by customers, including credit card information.

Data Classes

How should we move data around?

Control over

[Image of icons and notes]
User Classes

Who can access what types of data?

- **Outsiders**: members of the public may get access to prices, product descriptions, public corporate information, new drivers, and e-mail addresses.

- **Developers**: allowed access to both classes of development data.

- **Corporation Executives**: allowed access to corporate data; they may view both classes of development data; they may read customer data.

- **Employees**: fill orders; get access to customer data only.
Access Control Matrix

<table>
<thead>
<tr>
<th></th>
<th>Outsiders</th>
<th>Developers</th>
<th>Corporation Executives</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Data</td>
<td>read</td>
<td>read</td>
<td>read</td>
<td>read</td>
</tr>
<tr>
<td>Development Data for Existing Products</td>
<td></td>
<td>read</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Data for Future Products</td>
<td>read, write</td>
<td></td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>Corporate Data</td>
<td></td>
<td></td>
<td>read, write</td>
<td></td>
</tr>
<tr>
<td>Customer Data</td>
<td></td>
<td>write</td>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>
Network of the company
Outer Firewall

Goal:

- Restrict public access to corporate network
- Restrict employee access to the internet

What should be allowed?

- Email
- Web presence
Public Access:

Mail from the Internet
Outer Firewall (proxy firewall)
Mail Server (SMTP proxy)

Web and mail only

drop everything else
Inner Firewall

Blocks everything with a few exceptions:

• Allows SMTP connections using proxies, but only if routed to DMZ mail server

• Allows sys admins to access DMZ via trusted internal server locked-up or locked down

Which principle? fail safe default
Admin Connection

Uses SSH from trusted server.

- Inner firewall only allows SSH connections to DMZ servers

- SSH is on a physically secure trusted machine, with public-key cryptography used at both ends
Inner and Outer firewalls work together.

For example, if company uses NFS to share files, the outer firewall disallows those packets from leaving.

In addition, the inner firewall restricts them from entering the DMZ.
DMZ:

- mail: checks address and content
- WWW: accepts and services requests
- DNS: tracks domain name info for all hosts that the DMZ servers must know
- log server: admin logging
A closer look:

DMZ mail server:

1. Reassembles messages into headers, letter, and attachments
2. Scan letters and attachments
3. Destination addresses are rewritten to internal mail server.

Also has SSH server for trusted admin.
Closer Look: Web Server

- Runs SSH server for admin.

- Accepts and services requests from the internet - including purchase orders.

 Care is needed here, since we want to protect and isolate customer data.

 (All traffic will be encrypted.)
Once decrypted:

1. Save data to a file.

2. Once order is confirmed, the Web Server invokes a program to check this file.

3. Encrypt this file using public key of a system on the internal customer subnet.

 On this system, save encrypted version in an area not accessible by Web Server.

4. Delete the file!
Why this approach?

Defend the data!

Job of DMT server is simply to check and pass data along.

Since DMT is "vulnerable", this server is not safe for long-term storage.
DMZ DNS Server

Store domain name info for:

- DMZ mail, web, log
- Internal trusted admin host
- Outer firewall
- Inner firewall
DMZ DNS Server

Note: Does not know the internal mail server.

Why?

(That: Principle of least privilege)

Rely on inner firewall so DNS doesn't need it.
DMZ Log Server

The DMZ log server performs admin logging on the network. While these logs may be compromised, they also can help track attacks.

It might also incorporate intrusion detection on other components.
Summary of DMZ

Each server has the minimum knowledge necessary to perform its task.

Each computer will have minimum number of things running.

Why?
- Speed
- Less vulnerabilities
Internal Networks

Firewall on developer network allows read access from the corporate network.
Firewall on customer network allows read access from the corporate network.

Firewall on customer network also allows writes from DMZ Web server (no read access)
Firewall on corporate network does not allow read or writes from anywhere.
Internal "DMZ"

The network effectively has a second secure DMZ:

- Internal Mail Server
- Internal DNS Server
- Internal Web Server
- Dribble’s Inner Firewall
- Corporate data subnet
- Customer data subnet
- Developer data subnet