Today:
- Syllabus
- Lab overview
- Essay 1 due next Tuesday
- Intro to security
- A note on ethics
- If you are not registered now, see me!
Computer Security: Public perception
- glamorous & dangerous
- exciting
Reality: Often very boring.

- Detailed & difficult coding.
- High level mathematics.
- Changing permissions & learning users about their passwords.
"Why Computers are Insecure"
by Bruce Schneier

Will security ever get better?
No

Why?

We are programming "Satan's computer." In stead of making something work, security is designed to keep things from happening usually in the presence of a malicious adversary.
My Goal:

Introduce both theory and practice of computer security.

* You will be asked to attack and harden machines + software.

* You will also be required to write essays based on research articles. Emphasis will be on clear communication of issues + your opinion.

(This part is generally more difficult!)
How much activity is there, really?

- Monitoring on a Small 8 node network (from notes at a 2002 DARPA PL meeting) detected 640 billion attacks in a 4 month period.

- During peak of the Nimda worm, 2000 probes per second

- New headlines every day...
Why aren't we more secure?

- Technical issues, as well as cost/benefit
- Usually only pays off when things break
- Users often perceive no personal threat, so little incentive
- Ignorance is also a huge factor—many unsophisticated users
- Also legacy issues abound!
A few examples

1. Firewire

We like it, right?

But - interfaces allow direct access to memory (No access control.)

Result: Physical access + Firewire = No Security.
2. Backdoor processors

Devices now come with processors "hidden" inside.

Ex: Printers, washing machine, utility, router.

These have complete OSes, often badly configured.

Ex: Samsung printers had default admin accounts.
Basic Issues:

- How do you know who you are speaking to?
- How do you verify accuracy and honesty?
- How do you know when and where goods will arrive if valid payments will be provided?
The C.I.A. Triad

3 essential components:

Figure 1.1 The Security Requirements Triad

Image provided by William Stallings and Lawrie Brown, with permission.
Confidentiality: concealment of resources

- data confidentiality
- privacy

Ex: How does confidentiality apply in a college?
Confidentiality is not new.
Anyone ever heard of a Caesar

(Cryptography is old.)
Integrity: trustworthiness of resources
- Data integrity
- System integrity

Ex: Medical records system
Integrity also predates computers:

9500 BC: Food is stored in communal warehouse.

Tokens are placed in a clay envelope and sealed by warehouse.

Envelope broken in front of witnesses when farmer wants his share back.

(This evolved into coins later.)
12th century: Jewish bookkeepers invent double entry bookkeeping to maintain 'integrity'.

Each transaction recorded in 2 separate books.

This technique is still used in modern banking.
Availability: access to resources

- Again, both systems & data should be available.

Generally, this requirement is in direct conflict with the previous two.

The more available (& usable) systems are also often less secure (and more expensive).
Ethical behavior

In this class you will learn things you can use to break the law. In particular, labs are set up to give hands-on practice in a safe setting.

Conduct yourself with integrity. (And remember— I am neither your mother nor your babysitter.)
Essay: "The Law of the Horse"
by Lawrence Lessig, professor of law at Harvard, 1999

There may not be "cyberlaw" as a field, conduct is still defined in the CS field by:
- laws
- norms
- market
- architecture (or codes)
Laws: CFAA in 1986

Protects confidentiality of private information.

It is a crime to “knowingly access a computer without or in excess of authority to obtain classified information.”

Also a crime to access any “protected computer” without authorization even if no damage is done.
Norms:

While not legally binding, social norms certainly drive our behavior effectively.

“Norms regulate behavior in cyberspace as well: talk about democratic politics in the alt.knitting newsgroup and you open yourself up to ‘flaming’...’Spoof another’s identity in a ‘MUD’ and you may find yourself ‘toaded.’”

-- Lessig
Market: regulates price & services

Obviously the cost of the internet is a factor.

But digital issues are more complex. In his essay, Lessig says:

"Think of it like this: Today when you buy a book you have the 'right' to do any number of things with that book."

He goes on to muse how different pricing might be if the seller could regulate sharing, copying, or even # of times to read the book.
Eerie coincidence:

In 2008, Amazon added several Orwell books to their Kindle store. They did not have rights to them.

Amazon deleted the works from buyer's library.

However, this deleted their own work (such as annotations) also.
Code:

The internet is built on codes:

- TCP/IP
- Crypto protocols
- Server/router infrastructure

These seriously constrain behavior.
Next time:

An overview of crypto + hashing.

Note: Come see me now if you are not registered already!

- Alex Dietz
- Hanthi Zhang
- Zach Lucas
- Felipe Oliveira