Recap:
- Normal-ish rest of the week
- HW due Wednesday
- Final worksheet posted
- Review next Monday in class
- Test next Wednesday @ 8am
- Sample finals tomorrow
A graph \(G = (V, E) \) is an ordered pair of 2 sets:

- \(V = \text{vertices} = \{v_1, v_2, v_3, v_4\} \)
- \(E = \text{edges} = \{e_{v_1, v_2}, e_{v_2, v_3}, e_{v_3, v_4}, e_{v_4, v_1}\} \)

View:

- Peterson graph
Representing graphs

How do we make this data structure?

- pointers!

 like:

V

E

phso
Adjacency (or vertex) lists:

- $V_1 \sim V_2, V_5$
- $V_2 \sim V_1, V_3, V_5$
- $V_3 \sim$
- $V_4 \sim$
- $V_5 \sim$

Size: n "lists," each size $\leq n-1$

Lookup: Time to check if $v_i \sim v_j$:

- $O(n)$
- (or $O(\log n)$)

Upper bound: $O(n+m)$
Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>V4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>V5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Directed: need both "halves" of matrix

Space: $O(n^2)$

Check nbr: $O(1)$

$A[i][j]$
Which is better? Depends!

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Standard adjacency list (linked lists)</th>
<th>Adjacency list (hash tables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Θ(V^2)</td>
<td>Θ(V + E)</td>
<td>Θ(V + E)</td>
</tr>
<tr>
<td>Time to test if (uv \in E)</td>
<td>O(1)</td>
<td>O(1 + min{deg(u), deg(v)}) = O(V)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Time to test if (u \rightarrow v \in E)</td>
<td>O(1)</td>
<td>O(1 + deg(u)) = O(V)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Time to list the neighbors of (v)</td>
<td>O(V)</td>
<td>O(1 + deg(v))</td>
<td>O(1 + deg(v))</td>
</tr>
<tr>
<td>Time to list all edges</td>
<td>Θ(V^2)</td>
<td>Θ(V + E)</td>
<td>Θ(V + E)</td>
</tr>
<tr>
<td>Time to add edge (uv)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)*</td>
</tr>
<tr>
<td>Time to delete edge (uv)</td>
<td>O(1)</td>
<td>O(deg(u) + deg(v)) = O(V)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

\[α(n^2) \text{ space} \quad O(n+m) \]

Libraries: Boost, etc.
Dfn:
- G is connected if for all u, v, there exists a path from u to v.
- The distance from u to v, $d(u, v)$, is equal to the sum of weights of edges on the minimum u, v-path (sum of weights).

$d(u, v') = 0 \Rightarrow G$ is connected.

$d(u, v) = 2$ implies G is disconnected.
Algorithms on graphs

Basic 1st question:

Given any 2 vertices, are they connected?
Also: What is their distance?

How to solve?
Suppose we’re in a maze searching for something. What do you do?

Depth first search
- go as far as you can

Breadth first search
check nbs,
then their nbs, etc.
Pseudo-code: two versions

RecursiveDFS(v):
- if v is unmarked
 - mark v
 - for each edge vw
 - RecursiveDFS(w)

IterativeDFS(s):
- Push(s)
- while the stack is not empty
 - v ← Pop
 - if v is unmarked
 - mark v
 - for each edge vw
 - Push(w)

$O(m+n)$

Really, building a "tree":

DFS tree:

Stack: $v_1 v_3 v_5 v_6 v_7 v_8 v_9 v_10$
General traversal strategy

TRVERSE(s):
- put s into the bag
- while the bag is not empty
 - take \(v \) from the bag
 - if \(v \) is unmarked
 - mark \(v \)
 - for each edge \(vw \)
 - put \(w \) into the bag

Q: Can we use a different "bag"?

\[\text{queue} \Rightarrow O(m+n) \]
BFS: use a queue

 Traverse(s):
 put s into the bag
 while the bag is not empty
 take v from the bag
 if v is unmarked
 mark v
 for each edge vw
 put w into the bag

 BFS tree:
BFS vs. DFS:

- Both do connectivity
- Both are $O(m+n)$ time (w/ either graph rep)

- Difference:
 What you are optimizing for.
Next time:
- directed searching
- weighted graphs