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Abstract—The initial phase in a content distribution (file
sharing) scenario is delicate due to the lack of global knowledge
and the dynamics of the overlay. An unwise distribution of the
pieces in this phase can cause delays in reaching steady state,
thus increasing file download times. We devise a scheduling
algorithm at the seed (source peer with full content), based on
a proportional fair approach, and we implement it on a real file
sharing client [1]. In dynamic overlays, our solution improves by
up to 25% the average downloading time of a standard protocol
ala BitTorrent.

I. INTRODUCTION

A. Problem and Motivation

Swarming techniques have been widely studied recently
due to the vast number of applications that a decentralized
swarming network such as peer-to-peer systems enable. In
particular, the purpose of these studies is to make content
distribution protocols efficient and robust. See BitTorrent [2]
and references therein.

However, most of the literature focus, even recently [3],
has been both on the analysis, and on the improvement of
downloaders in their strategies for selecting which neighbor
(peer) to download from, and which part of the content (piece)
to download next.

Measurements [4], simulation [5], and analytical studies [6]
on BitTorrent-like protocols have also shown that, even though
peers cooperate, leveraging each other’s upload capacity, this
operation is not done optimally in every possible scenario.

Other studies [7], [8] show that there are source bottlenecks
due to a non smart piece distribution during initial phases
and churns — a churn is a transient phase characterized
by a burst of simultaneous requests for a content. In fact,
during churns, downloaders’ strategies are less effective since
the connected (neighboring) peers have either no interesting
content, or no content at all. As a consequence, the time to
download increases.

We claim that the source (also called “seed”) can help
through scheduling of pieces, in a better way than simply re-
sponding immediately in a FCFS manner, upon downloaders’
requests by providing a notion of fairness in distributing the
content pieces. We propose to provide a piece-level fairness via
a proportional fair scheduling at the source of the content to
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ensure that different pieces are uniformly distributed over the
peer-to-peer network, and thus peers can effectively exchange
pieces among themselves as quickly as possible. Specifically,
when the overlay is dynamic, we show that this translates into
shorter average time to download.

B. Contributions

The main contributions of this work are summarized as
follows:
• We devise and implement on a real file sharing client (we

call our modified file sharing client BUtorrent [1]) a seed
scheduling algorithm, that improves in dynamic overlays,
by up to 25% the average downloading time.

• We adapt the analytical fluid model in [4] so it is valid
even during initial and churn phases, capturing the effect
of seed scheduling.

• We show that a smarter seed scheduling leads to higher
probability for downloaders to make use of swarming to
finish their downloads.

C. Paper Organization

The rest of the paper is organized as follows: In Section II
we give an overview of the BitTorrent protocol, defining
notions that we will use for the rest of the paper. Section III
describes the problem of source scheduling of pieces to allow
downloaders to finish as fast as possible, and points out why
and when a file sharing protocol ala BitTorrent does not work
well in dynamic situations. In Section IV we describe our
solution: a new seed scheduling algorithm for BitTorrent. In
Section V we study analytically why scheduling at the seed is
important to reduce the time to download and Section VI val-
idates our analysis on swarming effectiveness experimentally.
Section VII discusses related work and finally Section VIII
concludes the paper.

II. BITTORRENT OVERVIEW

BitTorrent is a file sharing protocol for content dissemi-
nation. The content is divided into pieces (256 KB each) so
that peers not having the whole content can speed up their
download by exchanging pieces among themselves (swarm-
ing). A peer-to-peer system running a swarming protocol calls
the peers interested in downloading pieces leechers, and peers
that only act as servers (i.e., only upload content) seeders or
seeds. In this work, we consider a torrent T to be a set of at
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least one seed, many leechers, a tracker, which is a special
entity that helps bootstrap the peer-to-peer network, and a
file F, split into p pieces, which has to be distributed to all
leechers.
Definition (Neighborhood): given a peer v, we define as
neighborhood or peerset of v, Nv , the set of peers directly
connected to v, whose size |Nv| = kv .
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Fig. 1. (a) BitTorrent protocol: from left to right, the sequence of messages.
(b) Global information leads to faster content distribution. Peers unaware of
each other cannot use swarming.

The BitTorrent protocol works as follows (see Figure 1(a)
for an illustration): if a peer vi, leecher or seed, has pieces that
another connected leecher vj does not have, an “interested”
message is sent from vj to vi. Together with the interested
message, a binary vector called bitfield, is sent. Every peer
has a bitfield, of length equal to the number of pieces of
F , and a bit is set to one if the peer has the corresponding
piece. Through the bitfield dissemination, each peer v has
information of the pieces present in Nv (only). Amongst all the
interested leechers, only four peers are given an opportunity
to download data, using the choke algorithm. The choke
algorithm, applied every re-choking interval Trc,1 is simply a
round robin among the peers in NS , in case a seed S is running
it, while choking is based on two mechanisms for leechers:
(i) tit-for-tat and (ii) optimistic unchoke. The tit-for-tat peer
selection algorithm adopted by leechers, captures the strategy
of preferring to send pieces to leechers which had served them
data in the past: upload bandwidth is exchanged for download
bandwidth, encouraging fair trading. Because at the beginning,
no leecher has pieces to upload and because leechers prefer
to unchoke faster peers so they can download and collaborate
faster, one leecher (potentially up to four leechers initially)
is selected at random to explore potentially faster leechers
(optimistic unchoke). In Figure 1(a) only two leechers (A and
B) are in NS so both are unchoked.

Unchoked leechers select one piece of the content they want
to download using the Local Rarest First (LRF ) algorithm.
A leecher v applying LRF counts, thanks to the bitfield
dissemination, how many copies of each piece are present
in Nv and requests the rarest. Ties are broken at random.
As soon as a peer gets a request it replies with the piece.

1Trc = 10 seconds in most implementations.

In Figure 1(a) the piece with ID 2 goes to leecher A. Upon
reception of a piece, leechers inform all their neighbors with
a “have” message. Now, if leecher B does not have piece 2
yet, B sends an interested message to A.
Definition (initial phase): Given a torrent T, and a file F
split into p pieces, we define the initial phase of T for F to be
the time interval between the first scheduling decision made
by a seed, to the time all distinct p pieces of F have been
completely uploaded.
After the initial phase is complete, we say that the protocol
enters steady state.

III. PROTOCOL WEAKNESSES AND
PROBLEMS

We consider the problem of seed scheduling the piece
whose injection guarantees the maximum benefits for the
overlay. In this section we analyze why this is a challenge,
and when this is an important factor. To do so, we need the
following definitions:
Definition (Effectiveness): Given a peer-to-peer system, we
define effectiveness of a file sharing η as the probability that a
leecher v has at least an interesting piece for its neighborhood
Nv .
We discuss this effectiveness metric in detail in Section V-B.
Definition (Burstiness): Given a dynamic peer-to-peer sys-
tem, we define burstiness as the ratio of the peak rate of
leechers’ arrival to the average arrival rate during a period
of observation.

Observe that, the peak rate is defined as the ratio of the
size of a churn (number of newly arriving leechers) to the
length of the interval over which the churn occurs, and that
the average arrival rate is defined as the ratio of the total
number of leechers to the total considered time.
Definition (Seed Utilization): We define seed utilization as
the ratio of the number of uploads from a seed to the average
number of uploads from all leechers in the system.
Definition (Clustering Coefficient): Given a graph G=(V,E)
with V vertices and E edges, and denoting with Ei ⊆ E the
subset of edges that includes vertex i, we define the Clustering
Coefficient for G as [9]:

CC =
1
|V |

|V |∑
i=1

|Ei|(
kvi

+ 1
2

) . (1)

Although BitTorrent has been widely studied and recognized
as a robust protocol, it is far from being ideal in every scenario.
In the presence of burstiness for example, i.e., churn phases,
the effectiveness of swarming can be too low [10]. Moreover,
for overlays with low clustering coefficient, seed utilization
can be surprisingly high. Therefore it is natural to think about
improvement by adding intelligence to the seed as opposed
to investigating techniques that modify leechers’ strategies
(e.g., [3]).

To the best of our knowledge, only in [5] seeds have been
taken into consideration, assuming significant changes to the
whole BitTorrent protocol. In our approach, we only modify
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the scheduling at the seed, leaving the rest of the BitTorrent
protocol intact.

A. Global vs Local Information

Consider Figure 1(b): in the first round the seed uploads
piece 1 to leecher A which updates its bitfield vector. Since
A is not connected to B, no “have” message is sent. In the
second round, the seed uploads the same piece 1 to B. The
same happens in the third and fourth round for piece 2. Peers
unaware of each other cannot use swarming, which slows
down their downloading time as they ask the seed for the same
pieces. To use swarming, peers have to have neighbors with
interesting pieces. Seeds are interesting by definition as they
have the whole content; leechers may not be because, the LRF
algorithm does not yield an equal distribution of pieces (and
replicas), so it is less likely for a leecher to find its missing
pieces at other neighboring leechers since the view leechers
have is limited. Henceforth, we refer to the equal distribution
of pieces as “piece fairness”. The lack of piece fairness is
especially more pronounced when the clustering coefficient of
the overlay is low.

Without fairness, requests to the seed for the same pieces
can occur more frequently before the whole content is injected.
This can lead to torrent death if the seed leaves the system
prematurely and leechers are left with incomplete content.
In some other cases, uploading twice the same piece can be
even costly. For example, if the seed is run using the Amazon
S3 [11] service, higher seed utilization results in higher
monetary costs for using Amazon resources (bandwidth, CPU,
etc.)

B. Dynamic Overlays

Another problem is the dynamic nature of the overlays:
lack of offline knowledge of which peer will be present at
which instant of time, makes the piece distribution problem
challenging. In fact, in case a seed or a leecher schedules a
piece to a leecher j that later goes temporarily or definitively
offline, the effectiveness of the overlay segment containing j
is reduced inevitably and so performance decreases.

C. The Initial Phase Problem

A third problem occurs during the initial phase of a torrent
(defined in Section II). During the initial phase of a torrent, the
seed is one of the few interesting peers. Recalling how the tit-
for-tat mechanism works (Section II), we realize that in this
phase, even though swarming techniques are used, leechers
have not yet downloaded many pieces, so every leecher will
most probably ask the seed for its missing pieces, making the
seed a bottleneck. Even though this congestion at the source
(seed) is inevitable, and may not last for too long, this phase
can be prolonged if the dissemination is inefficient. Moreover,
when a new group of leechers joins the overlay (churn phase),
no leechers is willing to unchoke peers with no pieces due to
the tit-for-tat mechanism, with the seeds being the exception,
and so another initial phase effectively takes place. We are
not the first to claim that source bottlenecks occur due to

inefficient piece dissemination during flash crowds and churn
phases [12]. So during all the intial phases of a torrent, a wise
seed scheduling is crucial.

D. Example of Inefficiency of the Initial Phase
We illustrate the inefficiency of the initial phase through an

example.
Definition (Collision): We define a collision event at round i,
Ci to be the event that two leechers ask the seed for the same
piece at round i.
Notice that if two connected leechers generate a collision at
round i, and both are served, we have a suboptimal use of the
seed upload capacity (wasted upload), because one leecher
could have downloaded the colliding piece using swarming.
Definition (Earliest Content Uploading Time): We define
earliest content uploading time, to be the time it takes for the
seed to upload at least once every piece of the file.
A collision event slows down performance with respect to both
the earliest content uploading time, and downloading time,
since the seed’s upload capacity is used to upload more than
once the same piece. If a collision occurs, an extra round may
be needed to inject the whole content.
Example of optimal seed scheduling: Let us consider one
seed, six pieces, and three leechers A, B and C. Assume that,
running LRF , the leechers end up asking the seed for pieces in
the following order: A = [1, 2, 3, 4, 5, 6], B = [4, 5, 3, 1, 6, 2]
and C = [3, 6, 2, 5, 1, 4]. Let us also assume the seed uploads
three requests (pieces) in each round. After the first seed
scheduling round, pieces 1, 4 and 3 are uploaded, and after the
second round, all the content is injected. This is the optimal
case: to inject six pieces the seed needs two rounds.
Collision example: If instead the LRF for B ends up with the
permutation B = [4, 2, 1, 3, 6, 5], we notice that in the second
scheduling round, we have a collision between leecher A and
B, both asking the seed for piece 2, and so two scheduling
rounds are not enough anymore; to inject the whole content
we need to wait three rounds.

Nowadays, BitTorrent-like protocols do not have policies for
the seed to schedule pieces, since the piece selection is done
by LRF . In the next sections we present a seed scheduling
algorithm that attempts to overcome the lack of leechers’
awareness of each other, improving piece fairness, and we
show that seed scheduling is crucial for boosting swarming
effects.

IV. SEED SCHEDULING

In this section we provide a detailed explanation of how
we propose to modify any swarming protocol ala BitTorrent.
Our solution, based on the Proportional Fair Scheduling algo-
rithm [13], [14], exploits and improves the method conceived
by Bharambe et al. [5], where memory about pieces scheduled
in the past was first introduced. Furthermore, we formally
present the scheduling algorithm that we applied at the seed.

A. Detailed Idea of our PFS Scheduling at the Seed
Smartseed [5] inserts an intelligence into the seed by ac-

tively injecting the pieces least uploaded in the past, changing
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the nature of the BitTorrent protocol from pull (on demand)
to push (proactive). Our seed strategy instead, consists of
unchoking every possible leecher, so that all the requests
are taken into account, and uploading the (four) pieces
that are both requested the most in the current round and
uploaded the least in the past rounds, without changing the
way BitTorrent-like protocols work. The piece requested the
most in the current scheduling round represents the instan-
taneous need, namely, the present, while the least uploaded
piece represents the past scheduling decisions. We can view
Smartseed as considering only the past. The present need gives
the seed a rough view of which pieces leechers currently
need, perhaps because neighboring leechers do not have these
pieces. While past uploads gives the seed the ability to inject
the piece that is least replicated from its vantage point. By
equalizing the number of piece replicas, the probability that
leechers have pieces that are of interest to their neighboring
leechers increases.

Formally, if ri is the number of the requests for piece i at
the current round, and τi is the throughput vector for piece i,
namely, the number of times piece i has been uploaded in all
the previous rounds, PFS chooses the piece i∗ that maximizes
the ratio ri[t]/τi[t− 1]:

i∗[t] = max
i

{
ri[t]

τi[t− 1] + ε

}
(2)

where ε is just a small positive constant introduced to avoid
division by zero. The ri is decreased every time a piece
message is sent and τi is increased every time a piece has
been completely uploaded. The BitTorrent protocol splits
the 256 KB piece further into sub-pieces. We ignored this
further fragmentation in our simulations but not in our system
implementation (BUtorrent [1]).

B. History has to be forgotten

When peersets (neighborhoods) are dynamic, keeping track
of the pieces uploaded since the beginning of the torrent is
a bad idea, since some leechers may have left, others may
have arrived. The intuition is that the weights that τi brings
into the scheduling decision has to decrease over time. For
this reason, every time the seed uploads a piece, we update τi
using exponential weighted moving average (EWMA), namely:

τi[t+ 1] = β · Ii[t] + (1− β) · τi[t] (3)

where Ii[t] is an indicator function such that:

Ii[t] =
{

1 if piece i was uploaded at round (time) t
0 otherwise.

(4)
From power series analysis [15], we can express the smooth-

ing factor β in terms of N time periods (scheduling decisions)
as: β = 2

N+1 . This means that an upload decision is forgotten
after N rounds.

What is the best choice for N then? Let us assume that a
considered seed S has, at most Γ connections (in BitTorrent,
Γ = 80). Let us also assume a worse-case scenario, where
the seed’s neighborhood is made of leechers that do not serve

each other. When the peerset is static (peers are not coming
and leaving) then the seed can schedule the same piece i at
most Γ times, one for each leecher, since peers do not ask
again for a piece they already have.

If the seed happens again to receive a request for piece
i, this means that the request is coming from a new leecher
which joined the overlay after the first time i was uploaded
by the seed. So it is fine to upload that piece again. In other
words, if a seed has received Γ requests for the same piece,
the (Γ + 1)th request should be counted as fresh and so, we
set β = 2

Γ+1 so the oldest upload decision for this piece gets
to be forgotten.

We will see from our simulations that the value of β should
depend on the level of burstiness of the system. The challenge
here is that the scheduling is an online process. If the seed does
not know in advance how dynamic the peerset is, a static value
of β may only work for certain cases. For typical BitTorrent
overlays, where burstiness values are not extremely high [8],
a value of β = 2

80+1
∼= 0.0247 is a good heuristic.

Notice that 0 ≤ β ≤ 1 and that, the difference between
BitTorrent and PFSβ=1 (no memory of the history at all),
is that PFSβ=1 serves the pieces requested the most in each
round, considering all its connections (peerset), while a seed
in BitTorrent applies FCFS on requests coming from four
leechers selected in a round robin fashion. Moreover, if the
peerset of the seed is static, β → 0, i.e. remembering the
whole history, is the best choice.

A more elaborate solution would be to use a control
approach to adapt β. We leave this approach for future work.

C. Our PFS Algorithm

In this subsection we present formally the Proportional Fair
Seed Scheduling. We have implemented this algorithm in a
new file sharing client that we call BUTorrent [1].

In order to have a global view, the seed unchokes every
leecher in its peerset, allowing them to request their LRF .
Then a timer T is started. The first M requests (in BitTorrent
and in our experiments M = 4) are served by the seed as
BitTorrent does (FCFS). This is because the collection of
requests may take some time due to congestion in the underlay
network, and we do not want to waste seed uploading capacity.
Moreover, some of the Γ requests the seed is expecting may
never arrive. That is why we need the timer T : leechers send
their “interested” messages to all their neighborhood peerset,
so it is possible that in the time between the “interested”
message arrives at the seed and the unchoke message is sent by
the seed, a leecher may have started downloading its remaining
pieces from other peers, having nothing else to request from
the seed.

When the timer T expires, PFS is run on the collected
requests. Since the seed upload capacity has to be divided by
M , if the collected requests are less than M there is no choice
to make and so no reason to apply PFS. After choosing
the best PFS pieces, up to M other uploads begin, namely,
the seed does not interrupt the upload of the first M pieces
requested during the time T . Lastly, the N −M requests that
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Input: Γ (seed connections), Trc (re-choking interval),
T (timeout for collecting requests).
Output: Set of M pieces to schedule per round.
while Seed S has connected leechers do

if Rechoking interval time Trc expires then
foreach Leecher i in peerset of S do

unchoke i;
end
while S receives requests for pieces within T do

update vector of requests R = {r1, . . . , rp}
foreach q = 1, . . . , M do

S sends piece q (seed applies FCFS);
update R and τ ;

end
end
if collected requests > M then

β ← 2
Γ+1

foreach k = 1, . . . , M do
i∗k ← maxi

{
ri

τi+ε

}
(break ties at random)

ri∗k ← ri∗k − 1,
foreach j = 1, . . . , p do

if j = i∗k then
Ij = 1 ;

else
Ij = 0 ;

end
τj ← β Ij + (1-β) τj ;

end
end
S chokes the N −M peers whose request
were not scheduled ;

end
Keep serving leechers which requested i = i∗k ;
Update R and τ as above every uploaded piece;

end
end

Algorithm 1: Seed Scheduling in BUtorrent [1].

were not selected, are freed by choking the requesting peers
again. After the PFS decision, for a time Trc the M peers
whose requests were selected are kept unchoked and so they
may request more pieces. So M PFS decisions are made
every Trc. 2

V. ANALYTICAL RESULTS

In this section we show analytically that scheduling in the
initial phase of a torrent is crucial to boosting swarming
effects. Starting from the fluid model in [4], we also show how
seed scheduling can be captured during the initial phase by the
effectiveness of file sharing (η), defined in Section III, which
our algorithm improves, therefore reducing downloading time.

2The choice of Trc is not trivial and it should not be static as overlays are
not. We leave the exploration of this parameter for future work. BitTorrent
implementation has it set to 10 seconds.

A. Expected Number of Wasted Uploads in initial phase

Under our assumptions, we will show that there is, on
average, a wasted upload per leecher in the seed neighborhood.

During the initial phase of the torrent, we assume, because
of the tit-for-tat mechanism, that leechers do not serve each
other, because the probability that they are interested in one
another is very low. Since during initial phases, leechers
are unlikey to find interesting pieces at other leechers if
optimistically unchoked by those leechers, we also ignore opti-
mistic unchockes in this analysis. Of course these assumptions
become invalid as the torrent approaches steady state since
leechers are more and more likely to be interested in each
other.

We now compute the expected number of times a seed
uses its upload capacity to upload the same piece in a torrent
with L leechers, p pieces and one seed. During the initial
phase, almost all pieces are equally rare, so for the LRF
algorithm it is just a random selection of pieces. We consider a
discrete-time scenario3, where the time is given by the current
scheduling round. If we define a random variable Xi = {0, 1},
where Xi = 1 if and only if a pair of leechers have requested
the same piece at round i, the expected number of collisions
for a given leecher during its download of all p pieces from
the seed is given by:

E

[
p∑
i=1

Xi

]
=

p∑
i=1

E[Xi] =

p∑
i=1

(0 · P (Xi = 0) + 1 · P (Xi = 1)) =
p∑
i=1

1
p

= p · 1
p

= 1

For simplicity, we assume here that requests are independent
and uniformly distributed. This is in general not true, since
if a peer got a piece at round i, at round i + 1, the peer
will have one less piece to request. Relaxing this, the number
of collisions will be even higher as one can imagine. In our
technical report [1] we prove the following:
Theorem (Collision bounds): Given a peer-to-peer overlay
with one seed and L leechers all connected at least to the seed
and wishing to download a p-piece file, the expected number
of collisions in the first p rounds is at least

(
L
2

)
−
(
L
2

)2 1
p .

As discussed in Section III, every collision is a potential
waste of one slot of seed upload capacity. If the leechers
requesting the same piece serve each other, they could have
exchanged the piece, maximizing the swarming effect and so
minimizing the time to download the whole file.

B. Effectiveness during initial phases

In this section we adapt the Qiu-Srikant model [4] to capture
the initial phase of a torrent, modeling the seed scheduling
effect through one of its crucial parameter, the effectiveness
of file sharing η, defined in Section III. In particular, in [4]
there is the assumption that each leecher has a number of
pieces uniformly distributed in {0, . . . , p− 1}, where p is the

3This model of discrete time is important since otherwise the probability
of having the same request at the same instant goes to zero.
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number of pieces of the served file. This assumption is invalid
in the initial phase of a torrent as we show in our technical
report [1].

The Qiu-Srikant fluid model captures the evolution of seeds
y(t) and leechers x(t) in the overlay. Let λ be the new leechers
arrival rate, c and µ the download and upload bandwidth of
all leechers, respectively, θ the rate at which downloaders
abort the download, γ as the seed abandon rate and η as
effectiveness. From [4] we have:{

dx
dt = λ− θx(t)−min{cx(t), µ(ηx(t) + y(t))},
dy
dt = min{cx(t), µ(ηx(t) + y(t))} − γy(t).

(5)

Our experiments revealed that the number of pieces that a
leecher has, in initial and churn phases, is not uniformly
distributed but follows a power law distribution. In particular,
the probability that a peer has fewer pieces is higher. For lack
of space, we do not show such experiments. 4

To capture this different behavior in the initial phase, we
recompute the effectiveness of a file sharing introduced in [4]
as follows:

η = 1− P
{

leecher i has no
piece useful for its peerset

}
,

and so for two leechers i and j:

η = 1− P
{

leecher j needs no
piece from leecher i

}k
= 1− P k,

where:

P = P
{

leecher j has all pieces of leecher i
}
.

Thus:

P =
1
d2

p−1∑
nj=0

nj∑
ni=0

1
(ni + 1)α(nj + 1)α

·

(
p− ni
nj − ni

)
(

p
nj

) , (6)

where d =
∑p−1
i=0 (i + 1)−α is the normalization constant of

the Zipf distribution. Hence we obtain:

η = 1−

 1
d2p!

p−1∑
nj=0

nj !
(nj + 1)α

·
nj∑
ni=0

(p− ni)!
(ni + 1)α(nj − ni)!

k

(7)
1) Leechers: In Figure 2, we present the evolution of the

number of leechers (x(t) in Equation 5). Admissible values of
η depend on the typical values of skewness α ∈ [1, 4], plugged
into Equation (7). Results in this section are obtained under the
stability conditions described in [4]; in particular, θ = 0.001,
γ = 0.2, c = 1, µ = 1 and λ = {0, 2, 5} representing different
levels of burstiness of the arrival process of new peers. Starting
with one seed and 350 leechers, i.e. x(0) = 350 and y(0) = 1,

4In [4] there is also the assumption that, the ni pieces that peer i has, are
chosen randomly from the set of all pieces of the file, i.e., any permutation
of size ni is equally likely to occur. This assumption is still valid in the initial
phase, since in in the original BT implementation, (i) pieces equally rare are
chosen at random and, (ii) the first few pieces are randomly requested without
using LRF.
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Fig. 2. Number of leechers in the system decreasing faster over time indicates
a shorter downloading time. We study here the impact of different rate of
arrival λ on the effectiveness η of file sharing. We notice how for high arrival
rate, higher effectiveness has a higher impact on the completion time of the
initial 350 leechers.

set as in our later simulations, we plot the number of leechers
in the system to study the impact of λ and the effectiveness
η of file sharing.

The analytical model provides the insight that for static
peersets (λ = 0), the improvement we can achieve is limited
even if we bring effectiveness to one through judicious seed
scheduling. When burstiness increases (i.e., higher λ), even a
small improvement in η is significant in terms of reduction in
total time to download. Note that shortest downloading time
implies a smaller number of leechers in the system. Thus,
we expect that PFS scheduling at the seed would be most
effective in dynamic overlays.

VI. EXPERIMENTAL RESULTS

We performed a series of experiments to assess the perfor-
mance of our Proportional Fair Seed Scheduling, both using
the GPS simulator [16], creating our own random physical
topologies, and over PlanetLab [17]. Control messages are
considered in the simulations as well. Overlay topologies are
created by the tracker, which randomly connects a newly
arriving peer to a maximum of eighty peers. In all the
simulation experiments, we set a homogeneous bandwidth of 2
Mbps. For our PlanetLab testing we have implemented PFS
on a real client [1], starting from the mainline instrumented
client [18], and we left unconstrained the link bandwidth and
measured, on average, about 1.5 Mbps. In all our experiments,
there is only one seed and leechers leave when they are done.
This choice of one seed was made to show results in the worse-
case scenario. In the following plots, 95% confidence intervals
are shown.
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Fig. 3. Average download time for different burstiness values: 350 peers
are sharing a 400 MB file. Leechers always depart when they are done with
their download. The proportional fair scheduling guarantees up to 25% of
improvement over the First Come First Serve approach used by the BitTorrent
protocol.

A. Simulation Experiment 1: Average Downloading Time

Figure 3 shows the average downloading time of a 400
MB file for an overlay of 350 peers for different values of
Burstiness (defined in Section III). For PFS, we set the
forgetting factor β to 0.02 as explained in Section IV. We also
show performance of Global Rarest First (GRF), where each
peer is connected to every other peer. GRF serves as lower
bound on the average download time. We observe that PFS
improves by up to 25% the leecher average downloading time,
depending on the level of burstiness in the arrival process.

To obtain a value of burstiness of 200 for example, we
have used a peak rate of 10 where 10 (new) leechers join
the overlay in 1 second, every 200 seconds for a simulation
period of 7000 seconds. In this way we have an average arrival
rate of 350 peers / 7000 s = 0.05 peers/s. With a peak rate
of 10 and average arrival rate of 0.05, we obtain a burstiness
level of B = peak

average = 10
0.05 = 200. When the burstiness

level is high, leechers have too small peersets to make good
use of swarming. When instead the burstiness is too low for
the chosen value of β, then forgetting too fast has the same
effect as not remembering at all (as BitTorrent does). Even
for situations where there is no significant gain in time to
download (the first point of Figure 3 when burstiness = 200),
Section VI-B shows that it is still beneficial to use PFS to
reduce seed utilization.

B. Simulation Experiment 2: Seed Utilization

Figure 4 shows the utilization (defined in Section III) of the
only seed present for different file sizes and unitary burstiness
value. We point out few observations: (i) with PFS, seeds are
less congested by leechers’ requests, (ii) since leechers leave
when they are done, a lot more requests are made to the seed
at the end of the torrent when fewer connections are active (we
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Fig. 4. Seed Utilization for unitary burstiness and 350 peers. Seed applying
PFS is less congested due to better piece distribution.

do not show the plots of seed utilization over time for lack of
space). Leechers find themselves alone at the end thus they all
ask the seed being the only one left with interesting content.
So seeds using PFS receive less requests due to better piece
distribution. Moreover, lower seed utilization means higher
effectiveness and so delay in reaching the phase where leechers
are alone with the seed, (iii) the seed utilization is decreasing
monotonically with the file size. When file size increases, there
is more time for leechers to use swarming. Overall, requests
to the seed are less if seed scheduling is smarter. For higher
value of burstiness (plots in the technical report [1]) we have
noticed smaller improvement of the seed utilization because
of smaller peersets and hence fewer requests to the seed.

C. Planetlab Experiment

To validate our results, we tested our BUtorrent on Planet-
Lab. We run simultaneously the scheduling algorithms we wish
to compare to minimize the difference in bandwidth available
to different experiments.

We ran experiments with 350 PlanetLab nodes sharing a
400 MB file. We found that BUtorrent improves the average
download time by 11.8% over BitTorrent in static overlays (no
burstiness), 22.3% improvement for low burstiness (B = 400)
and 12.6% improvement for high burstiness (B = 800).

VII. RELATED WORK

Swarming techniques have received strong interest as peer-
to-peer traffic has become a significant amount of the whole
internet traffic. “Between 50 and 65% of all download traffic
is P2P related. Between 75 and 90% of all upload traffic is
P2P related” [19]. The most popular protocol which makes
use of swarming is BitTorrent [2].

A. Improving BitTorrent

Many proposals on how to improve the BitTorrent protocol,
by modifying the behavior of leechers, have appeared in
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the literature. Recent work [20] argues for greedy strategies,
BitTyrant [21] is an example. Other work [3] considered game
theoretical approaches. Our focus is only on the seeds, without
modifying leechers.

Smartseed [5], [14] applies some strategies at the seed
to boost performance. However, Smartseed is not backwards
compatible with the BitTorrent protocol, as opposed to our
seed scheduling proposal that keeps every other fundamental
algorithm of BitTorrent intact. Moreover, Smartseed does not
take into account dynamic scenarios, one of the key aspects
of our results. Another unpublished approach involving the
seed is given by the superseed mode of Bittornado [22].
Superseed alters the behavior of the main-line BitTorrent seed
by masquerading as a normal leecher, while in PFS, a seed
“probes” the torrent status to serve the best pieces.

B. Churn and transient phases
More generally, [23] shows strategies for selecting resources

that minimize unwanted effects induced by churn phases. In
our case the resources are the pieces that the seed has to
schedule.

Scheduling for BitTorrent is also discussed by Mathieu
and Reynier in [7], which analyzes starvation in flash-crowd
phases. They focus on the end-game mode, where leechers
are missing their last pieces. We take a more system-oriented
approach that analyzes initial phases.

Measurement studies were also carried out, with focus on
BitTorrent transient phases [12]. The goal is to understand,
given a peer-to-peer system, how quickly the full service
capacity can be reached after a burst of demands for a
particular content, namely, how long the system stays in the
transient phase. We studied initial phases using the fluid model
adopted by Qiu and Srikant in [4]. We fixed their notion of
effectiveness to capture seed scheduling effects during initial
phases.

VIII. CONCLUSION

In this work we considered the piece selection aspect
of content distribution protocols ala BitTorrent. We studied
analytically and we provided simulation and real evidence that
improving the scheduling algorithm at the seed can be crucial
to shorten the initial phase of a torrent therefore reducing
the average downloading time of the leechers. Our idea is
to give seeds a more global view of the system, supporting
but not substituting the Local Rarest First piece selection
algorithm used by BitTorrent like protocols. We devised our
seed scheduling algorithm, inspired by the Proportional Fair
Scheduling [13], and implemented it into a real file sharing
client that we call BUtorrent [1]. We found in simulation and
PlanetLab experiments that BUtorrent, in dynamic overlays,
increases the effectiveness of file sharing, reduces the con-
gestion of requests at the seed, improving by up to 25% the
average downloading time over BitTorrent.
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