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Abstract

Price war, as an important factor in undercutting competitors and attracting customers, has spurred
considerable work that analyzes such conflict situation. However, in most of these studies, quality of service
(QoS), as an important decision-making criterion, has been neglected. Furthermore, with the rise of service-
oriented architectures, where players may offer different levels of QoS for different prices, more studies are
needed to examine the interaction among players within the service hierarchy. In this paper, we present a
new approach to modeling price competition in (virtualized) service-oriented architectures, where there are
multiple service levels. In our model, brokers, as intermediaries between end-users and service providers, offer
different QoS by adapting the service that they obtain from lower-level providers so as to match the demands
of their clients to the services of providers. To maximize profit, players, i.e. providers and brokers, at each
level compete in a Bertrand game while they offer different QoS. To maintain an oligopoly market, we then
describe underlying dynamics which lead to a Bertrand game with price constraints at the providers’ level.
We also study cooperation among a subset of brokers. Numerical simulations demonstrate the behavior of
brokers and providers and the effect of price competition on their market shares.

Keywords: Service-oriented architecture, Quality of Service (QoS), oligopolistic competition, service
differentiation, Bertrand competition, price constraints.

1. Introduction

In today’s highly competitive Internet service
market, service providers, in order to survive,
should offer their customers more flexibility in both
their quality-of-service (QoS) and price offerings,
to meet a variety of customer needs and appli-
cation requirements. Clearly, any successful so-
lution for a service provider to stay in the mar-
ket, not only depends on supporting new and up-
dated technologies, but also involves economic as-
pects. However, pricing the services of the network,
even without considering quality differentiation, is

IThis paper extends our preliminary model in [1] by cap-
turing competition among more than two brokers and ana-
lyzing the effect of such competition on service qualities and
prices. We also study cooperation among a subset of brokers.
The text and presentation have been substantially revised.
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a challenging problem that involves several issues.
There have been many studies that attempted to
address these issues with or without considering dif-
ferentiated QoS. Pricing approaches include Paris
Metro Pricing [2], congestion pricing [3, 4], rate-
reliability pricing [5], and fairness pricing [6]. On
the other hand, with the rise of service-oriented ar-
chitectures, such as computational clouds and re-
cursive networks [7], network virtualization such as
CABO [8], and service brokerage companies such as
Google’s “Project Fi” [9], there is a need for more
advanced solutions that manage the interactions
among service providers at multiple levels. The
ultimate goal in service-oriented architectures and
network virtualization is to decouple the services
offered by network providers from those of service
providers which yield the layered structure of the
network [10]. Also, brokers as the intermediaries
between clients and lower-level providers, play a key
role in improving the efficiency of service-oriented
structures by matching the demands of clients to
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the services of providers. They can downgrade or
upgrade a service by sharing it among customers
or by combining several services to satisfy cus-
tomers’ demand. For example, in “Project Fi” [9],
Google offers a flat data rate of $10 per gigabyte of
data that is provided by either T-Mobile or Sprint,
i.e., Google selects the best network provider based
on factors such as coverage and performance, thus
adding flexibility and providing the best service to
its customers. Furthermore, Project Fi customers
can manage their costs based on their monthly
needs. This is in contrast to network providers, e.g.,
T-mobile and Sprint, which offer their customers
fixed data plans regulated by a static contract.

In this paper, we propose and dissect with ex-
tensive numerical simulations a multi-layer network
market model in which service brokers and service
providers compete at different levels in an oligopoly
to maximize their profit. In our settings, brokers
can pay a cost to upgrade or downgrade the ser-
vice that they buy from (lower-level) providers so
as to offer a new service to the market (customers).
The broker incurs costs when adapting a lower-level
service as it expends resources to either enhance
the service extended to its customers (e.g., by em-
ploying delay-jitter reduction or capacity allocation
techniques over a best-effort service) or degrade it
(e.g., by multiplexing client demands over a guaran-
teed service). We consider the competition among
providers and among brokers separately, while bro-
kers impose some preference constraints on (infras-
tructure, cloud or service) providers. We also con-
sider conditions that may lead to a monopoly mar-
ket and study how players act under such condi-
tions. We model service quality differentiation after
Hotelling’s location model [11], where firms com-
pete and price their products in only one dimen-
sion, geographic location. In our model, brokers
and (lower-level) providers compete and price their
services based on the quality of the service that they
offer. Our numerical results show that more service
differentiation generally yields more profit for all
players. However, besides quality differentiation,
the cost that brokers undergo also plays an impor-
tant role and they should forgo maximum differ-
entiation to reduce the cost, which leads to higher
profit. Also, as the number of brokers increases,
the market gets more competitive and prices drop
further.

We start with the assumption that players are
completely non-cooperative. This profit-seeking
nature of players leads to selfish behaviors that may

have negative consequences and reduce their prof-
its. So, it is reasonable to assume that a subset of
players discuss possible cooperative strategies, form
coalitions, and take actions that are beneficial to
all members of the group. Coalitional games have
been widely explored in different disciplines such as
economics and political sciences. Recently, cooper-
ation has emerged as a new strategy that has a huge
impact on improving performance from the physi-
cal layer [12, 13] up to the network layer [14]. The
application of cooperative game theory in network
studies has mostly focused on the traffic routing
problem, network traffic engineering problems, and
network connectivity problems [15, 16, 17, 18, 19].
In this paper, we also consider a two-layered market
in which a subset of the brokers cooperate with each
other rather than compete. Specifically, a new bro-
ker entering the market cooperates with one of the
existing brokers in competition with the other bro-
ker(s). We study the impact of this cooperation on
the quality that the new broker chooses, the other
brokers’ prices, and also customers’ utility. While in
most situations, collaboration improves the cooper-
ating brokers’ profit but with a negative impact on
customers’ utility, there are cases where both coali-
tion brokers and customers benefit from the coop-
eration. In these cases, cooperation of two brokers
divides the demand between the service providers
in such a way that causes tougher competition, and
consequently leads to lower prices, at the service
providers’ level.

1.1. Contributions and Paper Outline

We start by reviewing existing literature and po-
sitioning our work. We then introduce a novel two-
layered network market model in which providers
and brokers offer differentiated services and com-
pete in a non-cooperative game at each layer (Sec-
tion 3). We model the price selection based on the
Hotelling’s location model [11], and we characterize
the competitive behavior of players at each level of
the service hierarchy based on a Bertrand game. We
consider the market at the Nash Equilibrium point,
where all players are in their steady state and solve
the model using a two-stage procedure. We also an-
alyze the actions of players under a monopoly set-
ting. Our main results, obtained with an analytical
analysis and with numerical simulations, show that,
when there are only two brokers, a higher quality
differentiation leads to higher provider’s profit (Sec-
tion 4). We also find that, when there are multiple
brokers, the cost of converting the quality becomes
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an important factor for profit maximization (Sec-
tion 4.4). We proceed with considering cooperation
among a subset of brokers in Section 5. In a non-
cooperative game, all players try to maximize their
own profit independently. When a new broker en-
ters the market, the competition gets more intense
and there is a large drop in the profit of existing
brokers. In Section 5, we study the market where
the entering broker cooperates with one of the ex-
isting brokers. We compare the profit and price of
brokers (and service providers) with those achieved
under the non-cooperative game. We also consider
the effect of cooperation on the customers’ welfare.
Finally, Section 6 concludes the paper.

2. Related Work

Game theory has been applied to a wide range of
networking problems to capture the interaction of
(selfish or cooperating) players seeking a maximum
value for their (private) utility. The assumption is
that every step (or move) toward the maximization
of such utility impacts the utility of other players in
the model (or game). Given the connectivity nature
of a network of agents, a wide range of networking
mechanisms have been modeled with game theory;
from the physical ISO-OSI layer with transmission
power utility games [20] or spectrum sharing [21,
22] to Medium Access Control [23] to routing and
packet forwarding [24, 25], both in wireless [26] and
wired [27] scenarios.

Aside from modeling multi-agent protocol be-
haviors and the various resource allocation mecha-
nisms, markets and pricing equilibrium have further
exemplified the synergy between game theory (and
economics) and networked (cloud) systems [28, 29].
In particular, network economics has been a very
active research area in which both pricing and mar-
ket regulation strategies have been studied widely.
However, the exponential growth of Internet ser-
vices in hierarchical (i.e., multi-layer) markets re-
quires a deeper study of new market features that
will become available. One of the earliest work on
layered networks [30], identifies and discusses some
difficult economic problems related to resale and
complexity of competition among multiple owners
of physical networks. The authors study some in-
tegrated and unintegrated telecommunication com-
panies and the services that they offer to create
differentiated products to cover their costs. The
paper does not suggest any specific architecture or
policies for pricing as we do, but discusses the need

for a full economic model that features oligopolistic
competition among a few large companies that in-
vest in the physical infrastructure as well as firms
at the virtual network level.

Pricing for single-level games has been studied
extensively. He and Walrand [31] consider a self-
regulated service model, where market demand de-
termines the service quality, i.e., higher demand
causes more congestion and consequently less qual-
ity. Unlike ours, in their model there is a single In-
ternet Service Provider (ISP) who offers two classes
of service with different prices to manage conges-
tion. They show that when the price does not
match the service quality, the system may end up
in an equilibrium similar to the Prisoner’s Dilemma
game. Shetty et al. [22] compare the revenue of a
monopolist operator with and without service dif-
ferentiation. They show that the revenue is higher
when an operator offers two different services. Both
Li et al. [32] and Fulp and Reeves [33] provide a
traffic- sensitive pricing scheme for differentiated
network services. The focus of [33] is on maximiz-
ing the profit of the service provider who buys a dif-
ferentiated service connection from domain brokers
and sells it to users, whereas [32] focuses on provid-
ing economic incentives to users so as to maintain
a given level of traffic load.

Two-level games have also been studied more
recently. Our work is inspired by Zhang et al.
[34] and Nagurney and Wolf [35]. They propose
an economic model for the interaction and compe-
tition among service providers, network providers
and users. Both studies develop a two-stage (Stack-
elberg) game, where service providers compete in a
Cournot game, and network providers compete in
a Bertrand game. In [35], the authors generalize
the market of [34] by considering different demand
markets served by any number of service providers
and any number of network providers in which net-
work providers offer different levels of service qual-
ity. Although our work shares the same two-level
game approach with [34] and [35], in our frame-
work we consider users and providers at each level
(viewed as “users” of lower-level providers), having
service preference based on quality and price, where
at each level providers compete in a Bertrand game
(i.e., competition on price). Also, Zhang et al. [34]
study a market with two service providers and two
network providers offering the same level of service
quality. Our model, however, is more realistic as
we consider a market where players at both levels
may offer different qualities of service.
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Different game-theoretic models for differentiated
service markets of users and service providers have
also been proposed [36, 37, 38, 39]. In [38], the au-
thors propose a game-theoretic model where service
providers compete with duration-based contracts
for differentiated service. On the other hand, the
authors in [37] consider a joint price-quality mar-
ket with a Stackelberg game where providers are
leaders and users are followers. In their model,
providers consider the migration of users when set-
ting their price and quality. In another study, Sem-
ret et al. [39] consider a retail market where, for
each network, three types of players interact: a ser-
vice provider, a broker and a set of end-users; their
main contribution is a decentralized auction-based
bandwidth pricing for differentiated Internet ser-
vices. They show that Progressive Second Price1

provides a stable pricing in a market where service
providers receive most of the profits, and the bro-
kers’ profit margin is small. Finally, the authors in
[36] study a congestion-prone market with usage-
based pricing. They propose a model for users’
preference over their value and sensitivity to con-
gestion, and based on such model they characterize
the market share and optimal price for providers.

Our model considers multi-layer differentiated
service games where the service obtained from the
lower level can be upgraded or downgraded, and
hence can be sold to the higher level provider. In
our analysis, we apply price constraints when play-
ers’ optimal price would lead to losing market share,
and we also give insights on how players should then
update their price.

We also consider cooperation among a subset of
brokers in our model. Cooperative games were
introduced in the 1940s [41], and are considered
an important branch of game theory. Since then,
many solutions for these games have been pro-
posed [42, 43, 44, 45]. Although the Internet is
considered as a set of autonomous agents in game
theoretic studies, there are studies that consider
coalitions among players and study the effect of co-
operation on the problem at hand. Concepts and
principles from cooperative game theory have en-
riched our understanding of resource allocation in
wireless networks [46, 47, 48, 49], spectrum shar-
ing among users [50, 51], and transmission at the
physical layer [52, 53].

1PSP is a natural generalization of second-price auctions
in the case of sharing an arbitrarily divisible resource [40].

Another line of work studies the effect of coop-
eration among content providers and network ser-
vice providers, and the profit sharing mechanism,
on resource pricing [54, 55, 56, 57]. Most of these
studies either use Shapley value [58, 59] or Nash
bargaining game [60] to model cooperation in net-
work resource pricing. Shapley value emphasizes
revenue distribution based on weighted marginal
contribution of each entity in a group, while Nash
bargaining emphasizes the Pareto optimal property
and symmetry. In [54], network users are assumed
to have the same preference, and therefore the pric-
ing problem degenerates to a game between a single
user and an ISP. The authors show that Nash bar-
gaining makes the system converge to the Pareto
optimal point. The authors in [56, 61] study the
economics of traditional transit providers and con-
tent providers and apply cooperative game theory
to find an optimal settlement between these enti-
ties. They use Shapley value profit distribution for
a better engineered Internet. In [55], price theory
is used to design a peer-assisted content distribu-
tion system that manages ISP resources more ef-
ficiently. The authors in [62] consider the inter-
action among ISPs at different levels – local ISPs
and transit ISPs – and show that for local ISPs,
there exists an optimal scenario where all ISPs peer
with each other and jointly maximize their profit.
The authors in [57, 63] examine the interplay be-
tween traffic engineering and content distribution,
and study the relation between content providers
(CP) and network service providers. They show
how ISPs and CPs can cooperate, and why such
cooperation not only guarantees a fair profit distri-
bution among providers, but also helps improve the
economic efficiency of the network system. In our
study, only a subset of players (brokers) cooperate
with each other and they are focused on maximiz-
ing their own total revenue while competing with
the rest of players.

3. Model and Solution

In this section, we present our model and analy-
sis of a two-level game configuration and focus on
the competition among providers and brokers and
what emerges as pricing of their services. Figure 1
illustrates the game-theoreftic model: At the lower
level, we have two service providers, while at the
higher level, we have m ≥ 2 service sellers or bro-
kers that deal directly with users. Note that own-
ing a network infrastructure is expensive, and only
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a few large companies can afford its cost. There are
however many brokerage companies. Our model’s
goal is limited to analyzing and understanding the
dynamics of a market in a formal economic setting.
To this aim, we start by considering only two net-
work / lower-level providers in a simple oligopoly
market competition. The exclusion of more com-
plex relationships that may exist in real markets
keeps our model tractable while still producing in-
teresting results and insights.

To model service quality differentiation, as in
[11, 64], we model the difference between products
as differences in a product’s location in a prod-
uct space. The idea is widely used for both loca-
tion problems [65, 66, 67] and quality differentia-
tion [68, 69, 70] in network studies. In the Hottel-
ing’s model [11], there are two firms selling identical
goods along a street. Customers are assumed to be
uniformly distributed in the (geographical) space,
and the transport cost is a linear function of their
distance to the selected firm. A consumer selects
the firm that minimizes her cost of transportation
to buy the product. Hotteling concluded that two
firms would locate close to each other near the cen-
ter. Later, D’Aspremont et al. [64] changed the
utility function from linear to quadratic form, lead-
ing to firms choosing to maximize their distance
to the opposite player, and reaching equilibrium
for price competition. Brenner [71] extended the
game with the quadratic cost function to more than
two firms. He has shown that for more than two
firms, the “principle of maximum differentiation”
does not hold, and corner firms would benefit from
moving marginally toward the market center. In
our work, we model service quality differentiation
after Hotteling’s product differentiation, where cus-
tomers have different preference for service quality
that is modeled by their willingness to pay for that
quality.

We start by presenting our notation and some
basic settings, then we discuss some analytical and
numerical results.

3.1. Model Description

Let us consider a system with a continuum of
customers, m service sellers (brokers), denoted by
Bi, i = 1, . . . ,m, and two service providers, Sj , j =
1, 2. We assume that customers have different pref-
erence for quality (utility) described by:

θq − p

B1 B2

S1 S2

Brokers

Service Providers

Demand

D1 D2
q1, p1 q2, p2service qualities, prices

by brokers

Q1, r1
Q2, r2

service qualities, prices
by providers

Figure 1: Game-theoretic Model of a Two-level Competition
among Brokers and Service Providers. At each level, brokers
and service providers are in a Bertrand competition with
each other. The set of strategies are the service prices and
each player tries to maximize her revenue.

where θ is the customer’s marginal willingness to
pay for quality q, and p is the price of service. There
is a distribution of θ among customers. For simplic-
ity, we assume that θ is uniformly distributed on an
interval θ ∈ [θmin, θmax] and θmax > 2 θmin. Cus-
tomers seek a broker that maximizes their utility.

Both brokers and service providers can offer ser-
vices with different qualities, but in this initial
model we assume that each player only offers one
class of quality [72]. The service quality offered
by brokers is denoted by qi and lies in an inter-
val q ∈ [qmin, qmax]. The quality offered by ser-
vice providers is denoted by Qj . Also, we assume
that brokers and service providers compete in an
imperfectly competitive market. Furthermore, we
assume that there is no supply constraint and so
there are enough resources to meet each demand.
We also assume that there is no geographical or per-
formance limitation on service providers and that
brokers can always get all their required services
from the service provider that is more economically
convenient. As we mentioned earlier, in our model,
service providers have already incurred the cost of
setting up their infrastructure, so they intend to at-
tract part of the market and stay in the market. So
without loss of generality, we assume that service
provider S1 attempts to keep at least the broker
with the lowest quality (B1) as her buyer, and ser-
vice provider S2 attempts to keep the broker with
the highest quality (Bm) as her buyer (unless as
we note in Section 3.6, the market does not sup-
port this assumption), while other brokers choose
the service provider that offers the lower cost.

We assume that providers, and brokers, compete
separately with each other in a Bertrand game. In
this market structure, the players compete with

5



each other non-cooperatively to achieve their objec-
tives (i.e., maximize profit) by controlling the price
of the their services. The decision of each player is
influenced by other players’ actions and the action
of a player may be observed by all other players.
The players are service providers at the lower level
and brokers at the higher level. The strategy of
each player is the non- negative service price. The
payoff (utility function) is the profit generated by
selling the services. This game has a Nash equi-
librium. 2 We solve the model using a two-stage
procedure. First, given the service providers’ price,
ri’s, and demand as a function of the brokers’ price,
the brokers compete in a Bertrand game. The Nash
equilibrium of the Bertrand game leads to an opti-
mal price for the brokers and therefore the demand
becomes a function of the qualities and the service
providers’ price ri’s. In the second stage, service
providers compete in a Bertrand game to maximize
their profit by setting their price. Substituting ri’s
into the demand obtained by the Nash equilibrium
at the previous stage, we can determine the final
optimal price for the service providers and brokers.
We describe the game in detail next.

3.2. Demand Distribution

Brokers first choose the quality of service that
they will provide to customers, then they compete
on prices. If the brokers choose the same quality,
then the customers decide only based on the price,
and this leads to a Bertrand competition with iden-
tical goods, whose prices should be set equal to
costs, and no one makes profit. Thus the brokers
should choose to offer different service qualities to
make profits. Without loss of generality, we assume
that there exists a strict order on quality values,
that is, qm > ... > q2 > q1, and also Q2 > Q1.
Therefore, customers with a high willingness to pay
for quality will buy from Bm, while customers with
a low willingness will buy from B1.

For simplicity, first let us assume that we have
two brokers, B1 and B2. We can characterize the
demand for each broker by identifying the cus-
tomers who are indifferent between the two differ-
entiated qualities. The indifferent customers, rep-

2By definition, the Nash equilibrium of a game is a strat-
egy profile (list of strategies, one for each player) with the
property that no player can increase her payoff by choosing
a different action, given other players’ actions [73].

resented by θ∗, satisfy:

θ∗q1 − p1 = θ∗q2 − p2 ⇔ θ∗ =
p2 − p1

q2 − q1
(1)

Having uniformly distributed θ, the demand for
each broker, B1 and B2, is given by:

D1(p1, p2) =
θ∗ − θmin

∆θ
=

1

∆θ

(
p2 − p1

q2 − q1
− θmin

)
D2(p1, p2) =

θmax − θ∗

∆θ
=

1

∆θ

(
θmax −

p2 − p1

q2 − q1

)
(2)

where ∆θ ≡ θmax − θmin.
For more than two brokers, we can generalize

Equation (1) to find indifferent customers θ∗i be-
tween any two brokers Bi and Bi+1:

θ∗i qi − pi = θ∗i qi+1 − pi+1 ⇔ θ∗i =
pi+1 − pi
qi+1 − qi

(3)

Consequently, the demand for each broker is
given by:

D1(p1, p2, . . . , pm) =
θ∗1 − θmin

∆θ

Di(p1, p2, . . . , pm) =
θ∗i − θ∗i−1

∆θ
1 < i < m

Dm(p1, p2, . . . , pm) =
θmax − θ∗m−1

∆θ
(4)

Note that in the above equationsDi’s assume values
in the interval [0, 1]. This means that if for broker
Bi the demand Di is negative, then Bi is “out of the
market”; more precisely, we can rewrite the demand
function as:

Di = min

{
max

{
0,
θ∗i − θ∗i−1

∆θ

}
, 1

}
for 1 ≤ i ≤ m

(5)

3.3. Brokers’ Profits

Now that we have the demand distribution, we
can calculate broker i’s profit, assuming that con-
verting Qj to qi (whether to upgrade or downgrade
the service) has a marginal cost ci:

Πi = piDi −
qiDi

Qj
rj − ciDi(Qj − qi)2 (6)

where rj is the price of service that broker Bi pays

to service provider Sj , and qiDi

Qj
is the amount of
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service that Bi needs to buy to supply its own mar-
ket. This is because, if we consider that the quality
of the service is given by the quantity of needed
resources, such as bandwidth or memory, then the
required resources that a broker needs to buy can
be obtained from qi

Qj
Di. For example, consider a

broker’s QoS requirement of 10Mbps (qi), and a
service provider offering 5Mbps (Qj) channels; this
would result in ( qiQj

) = 10
5 = 2 demand requests

from the broker to the service provider to combine
two provider’s channels and upgrade the lower-level
service. On the other hand, if qi= 5Mbps and Qj=
10Mbps, then this results in 0.5 demand request
and possibly lower cost for the broker. We also
assume that the cost to the broker, ci, to convert
the service quality that such a broker gets from the
service provider, is proportional to the square of
the difference in quality, (Qj − qi). Intuitively, the
cost increases more rapidly as the service quality
increases, or alternatively, there is a diminishing
return in service quality as more resources are allo-
cated and cost increases. For simplicity, we assume
that ci = c.

Since we assume that each broker buys just from
one lower-level provider that yields less cost for the
broker, the following result holds:

Theorem 1. (Oligopoly of Service Providers)

Let us consider a market with two service
providers and multiple brokers. Let us assume that
the two providers offer their services in the same
geographical area. To guarantee an oligopoly mar-
ket at the service provider level (which captures the
attempt of service providers to stay in the market),
the broker with lowest quality buys from the lower
quality provider and the highest quality broker buys
from the higher quality provider.

Proof. We need to show that if the broker with the
lowest quality B1 prefers to buy from the higher
quality provider S2, then the other brokers also pre-
fer to buy from S2; therefore no broker will buy
from the lower quality provider S1, that is, we have
a monopoly market at the provider level.

Let us assume that B1 prefers to buy from S2,
then the cost of buying from S1 must be greater
than the cost of buying from S2:

q1

Q1
r1 + c(q1 −Q1)2 >

q1

Q2
r2 + c(q1 −Q2)2

After expanding the quadratic terms and simplify-

ing, we have:

q1(
r1

Q1
− 2cQ1) + cQ2

1 > q1

(
r2

Q2
− 2cQ2

)
+ cQ2

2

Grouping the terms that have q1 as a factor, we
have:

q1

(
r1

Q1
− 2cQ1 −

r2

Q2
+ 2cQ2

)
> c(Q2

2 −Q2
1)

Giving that the quality of other brokers is higher
than B1 (qi > q1), the derived inequality holds
for other brokers as well. Even for other brokers,
buying from S1 is more costly, therefore we have a
monopoly market (no broker buys from S1). The
same logic applies if Bm prefers to buy from S1.
Hence we prove the claim.

Now that we have the profit function for brokers,
we can find the optimal price for them. In the first
stage, given the service prices rj , and service qual-
ities Qj , the brokers compete in a Bertrand game
with differentiated goods. We present the results
for the case m = 2, but all results can be simi-
larly calculated for general cases with more than
two brokers. As we have seen, in a Bertrand game,
players control the price to maximize their profit.
The solution to the Bertrand game is hence a Nash
Equilibrium, which is obtained as follows: We sub-
stitute Equation (2) into Equation (6), and solve
∂Πi/∂pi = 0 to obtain Nash equilibrium, that leads
to (see Appendix for the detailed derivation):

p1 =
1

3
((q2 − q1) (θmax − 2θmin) +

2q1r1

Q1
+

q2r2

Q2
+ 2c (q1 −Q1) 2 + c (q2 −Q2) 2)

(7)

p2 =
1

3
((q2 − q1) (2θmax − θmin) +

q1r1

Q1
+

2q2r2

Q2
+ c (q1 −Q1) 2 + 2c (q2 −Q2) 2)

(8)

Now the brokers’ prices, p1 and p2, are a function
of the brokers’ and providers’ service qualities, and
providers’ prices rj ’s. The next step is to plug them
into Di’s to obtain the demand as a function of rj ’s:

D1 =
1

3∆θ
(θmax − 2θmin) +

q2r2
Q2
− q1r1

Q1
− c (q1 −Q1) 2 + c (q2 −Q2) 2

3∆θ (q2 − q1)

(9)
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D2 =
1

3∆θ
(2θmax − θmin) +

q1r1
Q1
− q2r2

Q2
+ c (q1 −Q1) 2 − c (q2 −Q2) 2

3∆θ (q2 − q1)

(10)

Now, D1 and D2 are dependent on service
providers’ prices rj ’s, which shows the interaction
between the two layers. Providers’ prices affect the
cost for brokers and in turn affect the price of bro-
kers and consequently the demands of both brokers
and providers. In the next subsection we show how
to find the optimal rj ’s.

3.4. Modeling Providers’ Profits

At this stage, we have the total demand served
by (service sold by) each broker. To have an im-
perfectly competitive market at the level of service
providers, the combination of their price and qual-
ity should be such that each broker prefers a differ-
ent service provider. Assuming B1 prefers S1 and
B2 prefers S2, the following inequalities should hold
for B1 and B2, respectively:

q1

Q1
r1 + c(q1 −Q1)2 <

q1

Q2
r2 + c(q1 −Q2)2

q2

Q2
r2 + c(q2 −Q2)2 <

q2

Q1
r1 + c(q2 −Q1)2

(11)

These constraints ensure that broker B1 chooses
provider S1 and B2 chooses S1, as the cost is lower
than that of getting service from the other provider.
Later we will discuss the situation when one of these
constraints is violated.

For the general case, we assume that the first
k brokers choose provider S1 and the remaining
brokers Bk+1 to Bm choose S2. Constraints (11)
should hold for Bk and Bk+1 instead of B1 and B2.

In this stage of the game, service providers com-
pete in another Bertrand game. The profit of each
provider is defined as:

U1 =

k∑
i=1

Diqi
Q1

(r1 − f1)− eQ2
1

U2 =

n∑
i=k+1

Diqi
Q2

(r2 − f2)− eQ2
2

(12)

where eQ2
j is the cost of providing quality Qj , rj

is the service price and fj represents some general
cost (fee). After plugging Equations (9) and (10)
into the providers’ profit, we obtain quadratic equa-
tions in rj . To obtain the optimal solution (Nash

equilibrium), we solve ∂Uj/∂rj = 0 which, for two
providers, yields:

r1 =
2f1

3
+
f2q2Q1

3q1Q2
+
Q1

3q1
×

[c(q2 −Q2)2 − c(q1 −Q1)2−
(q1 − q2)(4θmax − 5θmin)]

r2 =
2f2

3
+
f1q1Q2

3q2Q1
+
Q2

3q2
×

[c(q1 −Q1)2 − c(q2 −Q2)2−
(q1 − q2)(5θmax − 4θmin)]

By substituting rj ’s in Equations (7) and (8), we
get the final values for pi’s as functions of only user
preferences and service qualities (besides marginal
costs/fees):

p1 =
1

9

(
5c(q1 −Q1)2 + 4c(q2 −Q2)2

)
+

4f2q2Q1 + 5f1q1Q2

9Q1Q2
+

1

9
(q2 − q1)(16θmax − 20θmin)

p2 =
1

9

(
4c(q1 −Q1)2 + 5c(q2 −Q2)2

)
+

5f2q2Q1 + 4f1q1Q2

9Q1Q2
+

1

9
(q2 − q1)(20θmax − 16θmin)

We obtain the final values for Di’s from Equa-
tions (9) and (10):

D1 =
1

9∆θ
(4θmax − 5θmin)+

c(q1 −Q1)2 − c(q2 −Q2)2

9∆θ(q1 − q2)
+
−f2q2Q1 +Q2f1q1

9∆θ(q1 − q2)Q1Q2

D2 =
1

9∆θ
(5θmax − 4θmin)+

c(q2 −Q2)2 − c(q1 −Q1)2

9∆θ(q1 − q2)
+

f2q2Q1 −Q2f1q1

9∆θ(q1 − q2)Q1Q2

3.5. Positive Utility

In the previous setting we assumed that cus-
tomers buy service from either B1 or B2, even if
their utility is negative. In this subsection we re-
move this assumption by solving a game with only
positive utility customers, i.e., customers whose
value of θq − p is positive. Therefore, customers
with zero utility provide a lower bound on θ (we call
it θ0), which can be found by solving θ0q1−p1 = 0.
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Thus θmin is replaced by p1
q1

:

D1(p1, . . . , pm) =
θ∗1 − θ0

∆θ
=

1

∆θ

(
p2 − p1

q2 − q1
− p1

q1

)
(13)

As in our previous setting, this is a two-stage
Bertrand game, and the Nash equilibrium for each
game is found by replacing the Di’s into the profit
functions and solving ∂Πi/∂pi = 0 and ∂Ui/∂ri =
0. We discuss the difference between this positive
utility game and the previous (unconstrained util-
ity) game later in Section 4.

3.6. Game with Constraints

At the lower level of service providers, the con-
straints (11) are not considered while calculating
the equilibrium points. Therefore, in some situ-
ations, one of the constraints might be violated.
Let us assume that after finding ri’s, the con-
straint for B1 is violated, i.e., q1

Q1
r1 + c(q1−Q1)2 ≥

q1
Q2
r2 + c(q1 − Q2)2. This means that, under this

condition, broker B1 incurs more cost to buy service
from provider S1 than provider S2; so if provider S1

does not change its price, B1 will get service from
S2, and this situation leads to a monopoly market
at the providers’ level.

To find an optimal point that also meets the con-
straints (11), provider S1 should set its price such
that

r1 <
Q1

q1

(
q1

Q2
r2 + c(q1 −Q2)2 − c(q1 −Q1)2

)
In response, provider S2 updates its price by plug-
ging r1 into ∂U2/∂r2 = 0 which leads to r2 = F(r1),
i.e., r2 as a function of r1. Thus, S1 can replace r2

with F(r1) in its inequality to calculate an optimal
price that satisfies the constraint:

r1 =
Q1

q1

(
q1

Q2
F(r1) + c(q1 −Q2)2 − c(q1 −Q1)2

)
−ε

ε > 0

In this stage of the game, S1 should find a positive
value for ε that maximizes its profit. By substitut-
ing r1 and r2 as functions of ε, U1 is a decreasing
quadratic function of ε. Solving ∂U1/∂ε = 0 results
in optimal ε. If ε < 0, it can be replaced with a
small positive number close to zero. Since U1 is de-
creasing with respect to ε, any other positive value
larger than the chosen ε leads to less profit. Clearly,

the new set of prices for the service providers is an
equilibrium point for the game, since it maximizes
the revenue of both providers while meeting the
constraints, so each service provider does not lose
its market (i.e., one of the two brokers stays as its
customer); therefore neither of the service providers
has an incentive to change its price independently.

4. Numerical Analysis

In this section we present some numerical results
to illustrate the effect of choosing different qual-
ities of service by brokers. We consider settings
with two, three and four brokers. We also study
the positive game model for two brokers. We show
in detail how the best strategy for any broker is to
choose a quality level that maximizes quality dif-
ferentiation with other brokers. Also, when there
are more brokers, the higher competition leads to
more reasonable prices and a lower probability of
a monopoly market. In the following subsections,
we start with our main observations followed by
a detailed analysis of our results. Though we have
obtained results for a wide range of parameters’ val-
ues, we only present in this paper a representative
set of these results.

4.1. Two Brokers

Observation 1. All players (brokers and
providers) make more profit as the gap between
qualities of service offered by brokers increases,
i.e., the maximum differentiation principle applies.

Observation 2. When the qualities of service of-
fered by brokers are close to each other (∆q ≈ ∆p

θmax
)

the demand mostly goes to the lower quality service.
In this situation, it is more likely that monopoly
happens at the service provider level.

For the two brokers case, we consider a setting
where θmax = 1.5, θmin = 0.2, c = 0.1, and
fi = .01265 × Q1.5

i . The service qualities of the
providers are set to Q1 = 20 and Q2 = 45. For the
brokers, q2 varies between 30 and 60, and we set
q1 to different values such that it is less than, equal
to, or larger than Q1 to see how the market changes
under different conditions, although here we show
plots for only two different values of q1. Figure 2
shows the results when B1 downgrades the qual-
ity of service obtained from S1 (q1 = 13), whereas
Figure 3 shows the results when B1 upgrades that
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Figure 2: Price, profit and demand distribution for brokers,
and price of providers, B1 downgrading the quality, Q1 =
20, q1 = 13, Q2 = 45, 30 ≤ q2 ≤ 60, as the service qual-
ity offered by broker B2 changes.
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Figure 3: Price, profit and demand distribution for bro-
kers, and price of providers, B1 upgrading the quality, Q1 =
20, q1 = 29, Q2 = 45, 30 ≤ q2 ≤ 60, as the service quality
offered by broker B2 changes.

quality (q1 = 29). First, we note that the total de-
mand constitutes the whole market. So, when the
demand for one broker/provider side decreases, the
demand for the other side increases, and vice versa.
But this is not the case for prices and profits – they
increase or decrease together.

When broker B1 downgrades the lower-level ser-
vice obtained from its provider S1 (i.e., q1 < Q1),
we see from the brokers’ and providers’ price plots
(Figure 2) that all brokers and providers can offer
their service at higher prices and make more profit
compared to the case when B1 upgrades the ob-
tained service from S1 (Figure 3). Similarly, by
comparing the behavior for higher values of q2,
where q2 > Q2, with that for lower values where
q2 < Q2, we observe that a better strategy for bro-
ker B2 is to upgrade the lower-level service that
it obtains from S2 (i.e., q2 > Q2). This happens
because upgrading q2 or downgrading q1 leads to a
larger gap between q1 and q2, therefore the two sets
of broker and provider can offer more differentiated
services at higher prices. In fact, this follows the
maximum differentiation principle.

In this setting, since we have the least num-
ber of brokers to compete, it is more likely that
monopoly situations arise. For example, for q1 = 29
(Figure 3), the market exhibits abnormal behavior
when the gap between q1 and q2 is small, while the
gap between providers’ qualities and brokers’ qual-
ities is large. Specifically, the market approaches a
monopoly where B2 has a small market share when
q2 is closer to the service quality of S1 (Q1). Ob-
serving the results when the values of q2 are close to

30, we note that, although the providers’ game is a
monopoly at some points (where S2’s price r2 = 0),
the brokers’ game is not, and B2 can have a small
share of the market D2 while it gets service from
provider S1. This is because when the gap between
q1 and q2 is not significant, most of the customers
prefer the cheaper service provided by broker B1.
When the market is a monopoly, the provider or
broker who remains in the market can increase its
price while ensuring that the other competitor can-
not enter the market even if that competitor lowers
its price to equal its cost, thus there is no way for
the competitor to make profit and is prevented from
entering the market.

On the other hand, for q1 = 29, when broker B2 is
upgrading the service quality obtained from S2, i.e.,
q2 > Q2, as the gap between q2 and Q2 gets larger,
S2 starts to decrease its price to cover the cost of the
quality upgrade for B2 so as not to lose its market
share. Since the value of q1 is somewhere between
Q1 and Q2, it is more economical for B1 to buy
service from S2 rather than S1 at the optimal prices,
i.e., the optimal price of S1 violates constraints (11)
and it should update its price r1 as we explained in
Section 3.6. Consequently, S2 should also update
its price. Since there is a substantial gap between q1

and q2, both providers can compete in the market.

4.2. Positive Utility Results

Observation 3. In the positive utility game, in-
crease in the profit of one player is at the expense
of the other player.

10



30 40 50 60
0

50

100
Price of Brokers (P)

P
ri

ce

 

 

30 40 50 60
0

20

40

60

Price of Service Providers (r)
P

ri
ce

 

 

30 40 50 60
0

2

4

6
Profit of Brokers (π)

Quality of Service Offered by Broker B
2
 (q

2
)

P
ro

fi
t

B1
B2

S1
S2

30 40 50 60
0

0.5

1
Demand of Brokers (D)

D
em

an
d

 

 

q
1
 = 13

Figure 4: Price, profit and demand distribution for brokers,
and price of providers, for the positive utility game, B1 down-
grading the quality Q1 = 20, q1 = 13, Q2 = 45, 30 ≤ q2 ≤ 60,
as the service quality offered by broker B2 changes.

30 40 50 60
0

0.5

1
Demand of Brokers (D)

D
em

an
d

 

 

30 40 50 60
0

50

100
Price of Brokers (P)

P
ri

ce

 

 

30 40 50 60
0

20

40

60

Price of Service Providers (r)

P
ri

ce

 

 

30 40 50 60
0

2

4

6
Profit of Brokers (π)

Quality of Service Offered by Broker B
2
 (q

2
)

P
ro

fi
t

B1
B2

S1
S2

q
1
 = 29

Figure 5: Price, profit and demand distribution for brokers,
and price of providers, for the positive utility game, B1 up-
grading the quality Q1 = 20, q1 = 13, Q2 = 45, 30 ≤ q2 ≤ 60,
as the service quality offered by broker B2 changes.

We now consider the case of positive utility com-
petition. Intuitively, we expect to see some restric-
tion on the prices for all brokers and providers,
otherwise they lose part of the market for which
the utility (θq − p) is negative. Therefore, it is a
compromise between price and demand. The nu-
merical results confirm this intuition. Comparing
the prices of brokers and providers under positive
utility and unconstrained utility, for the same con-
ditions, shows that the highest prices under positive
utility are below half of the prices in the latter case,
while the demands are less as well ; compare plots
in Figures 2 and 3 with plots in Figures 4 and 5.

Also, in this positive utility game, whether bro-
kers upgrade or downgrade the service obtained
from their providers, the behavior is different from
that in the unconstrained utility game. Specifically,
since the positive utility market is more sensitive
to prices, a smaller gap between the service quality
offered by the broker and the quality it gets from
its provider yields more profit. Furthermore, while
for both brokers, slightly upgrading the service ob-
tained from lower-level providers (and in turn, sell-
ing a higher quality service to customers) is gen-
erally more profitable (compare profit plots in Fig-
ure 4 and Figure 5), B2 gains more profit from a
larger quality gap caused by lower q1.

Unlike the unconstrained utility game, if profit
increases for one player, profit decreases for the
other player. Another interesting observation from
these plots arises when there is a monopoly in the
market: while there are conditions under which bro-
ker B1 can lose its market share (D1 = 0 when

q2 = 30 in Figure 4), service provider S1 can man-
age to stay in the market under all conditions.

4.3. Sensitivity to Quality-Conversion Cost

In our model, we assume that brokers can change
the quality of service that they buy from the service
providers so they offer a new service that meets the
requirements of customers. Modeling the real cost
function for converting the service quality is com-
plicated and our economic model clearly does not
capture the complex structure of the market. For
the sake of analytical tractability, we have chosen
a quadratic function c(qi − Qi)

2, that intuitively
captures the reasonable assumption that the cost
of service quality upgrade/downgrade by a broker
increases more rapidly as (the difference in) service
quality increases.3 To study the sensitivity of our
results to this assumption, we have analyzed the
effect of this quality conversion cost by examining
different values for c. For relatively small values of
c, brokers are able to change the quality of the ob-
tained (lower-level) services as much as they want to
achieve more service differentiation from other bro-
kers. As the value of c gets larger, the cost of con-

3Consider, for example, the service offered by a Content
Distribution Network (CDN) provider who manages the de-
gree of replicating content to meet a certain delivery delay
requirement. In this case, the cost could be modeled as a
function of the area over which the content is replicated, i.e.,
the cost is proportional to the square of the radius/distance,
where a larger distance reflects higher content replication
and thus lower delivery delay (higher/better quality of ser-
vice).

11



verting the lower-level quality increases, and conse-
quently there is an optimal point for changing that
quality as a broker maximizes service quality differ-
entiation from other brokers. Specifically, while for
a broker, picking a quality beyond that (optimal)
point decreases the profit of that broker – because
of the high cost of converting the lower-level quality
that it is getting – the profit of the other broker(s)
still increases because of maximum service quality
differentiation. In our numerical analysis, we as-
sume that the service qualities which B1 and Bm
pick, are not beyond the optimal quality (that max-
imizes their profit).

4.4. Results with Three and Four Brokers

Observation 4. When there are more competitors
in the market, the gap between their service quali-
ties decreases, the competition on the price becomes
tougher and brokers should offer their services at
lower prices to be able to attract customers and
make profit.

Observation 5. In the market with more than
two brokers, though the maximum differentiation
between the service qualities of brokers reduces the
intensity of competition, the cost that brokers un-
dergo is also playing an important role. There are
situations where violating the maximum differenti-
ation rule in order to buy service from the other
provider gives rise to higher broker’s profit.

In this section we extend our setting to three and
four brokers to see if the maximum differentiation
principle holds for more brokers. We assume that
two brokers offering the lowest and the highest qual-
ity of service to users are already in the market and
define the range of feasible quality. We then let the
other one or two brokers enter the market with a
quality level chosen in such range. After fixing a
quality level, the third (and fourth) broker obtains
service from the (lower-level) provider that mini-
mizes the quality difference between them. This in
turn minimizes the broker’s cost in providing ser-
vice to its customers. As in previous case studies
with only two brokers, we show results at the equi-
librium of the game by identifying indifferent cus-
tomers between available service qualities. We also
apply all constraints on the providers’ level to have
an oligopoly market.

4.4.1. Results Considering Three Brokers

We consider the game with θmin = 1, θmax = 70,
two providers S1 and S2 with Q1 = 30 and Q2 = 60,

and three brokers, B1, B2 and B3, with qualities q1,
q2 and q3, respectively. We assume that the qual-
ity levels of B1 and B3 are fixed and we let the
quality of broker B2 change in the interval (q1, q3).
Broker B2 chooses the service provider with least
quality difference to reduce its (service conversion)
cost. Given the above settings, we observe a tip-
ping point for the quality of broker B2 (q2): for
q2 < 45, B2 chooses provider S1, and for q2 > 45,
B2 chooses provider S2; for the frontier value of
q2 = 45, although there is no quality differentiation
between the two (lower-level) providers, we observe
that downgrading the service has less cost than up-
grading it, therefore B2 chooses to get its service
from S2. The jump in profit at q2 = 45 in Figure 6
is because of B2’s switching provider.

As we can see in Figure 6, for each of brokers
B1 and B3, which have been already in the market,
it is more profitable if broker B2 chooses to offer
a quality with the maximum difference from their
quality, while for broker B2 it is more profitable
to have maximum difference with both B1 and B3.
As we have observed in the case of two brokers,
it is not advisable to choose a quality of service
similar to that of other providers. Intuitively, this
is because the more difference in the service quality
that they offer customers, brokers are more likely
to serve customers at a higher price. We note this
by observing that the optimal quality for broker B2

is the average of the other fixed brokers’ qualities
(q1 and q3). For example, in the first plot from left
in Figure 6, the optimal q2 = 50, which is obtained
from (q1 + q3)/2 = (10 + 90)/2.

We also change the fixed service qualities of bro-
kers B1 and B3 toward the optimal quality for B2 to
see how the market changes and compare such re-
sults with those of Hotelling’s location model with
more than two firms [71]. As we can see in Figure 6,
unlike the Hotelling’s model [71] where corner firms
have a tendency to move toward internal firms, here
all brokers make less profit when quality differentia-
tion decreases. Although, for broker B3, its market
share increases (Figure 7), the effect of dropping
the price is more pronounced than the extra share
of the market and leads to lower profit.

Main Result: This means that, unlike the
Hotelling’s location model, for three firms, the mar-
ket follows the maximum differentiation principle
and brokers make more profit when their service
qualities are more different from each other. In
the following setting we study four brokers to see if
this pattern repeats.
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q2.

4.4.2. Four Brokers

In this setting, we consider a scenario with two
brokers, B1 and B4 already in the market and of-
fering fixed service qualities q1 = 10 and q4 = 90,
respectively, and two other brokers, B2 andB3, that
enter the market later. Without loss of generality,
we assume that q2 < q3. Figure 8 shows the changes
in profit for brokers B2 and B3. We omit the results
for B1 and B4 since they follow the same pattern
as in the previous case study with three brokers,
i.e., the more differentiation between their quali-
ties and those we set for B2 and B3, the higher is
their profit. This means that such brokers are not
the decision makers in this situation.

As we observe in Figure 8, for broker B3, whose
quality is between q2 and q4, the optimal quality
q3 value is one that yields maximum differentia-
tion from both qualities q2 and q4, which is close
to the average of q2 and q4. For broker B2 we ex-
pect instead that the optimal quality level is around
q2 = 37, that is, the quality with maximum differ-
ence from q1 (10) and the optimal q3 (which equals
64 given maximum quality differentiation among
all brokers). However, we observe that the opti-
mal quality for B2 is at q2 = 45, when broker B2

switches from provider S1 to provider S2 and in-
stead of upgrading the quality, downgrades the ser-
vice that it obtains from provider S2 (recall that
Q1 = 30 and Q2 = 60). To understand why B2 vio-
lates the maximum differentiation rule, we analyze
the situations under both q2 = 37 and q2 = 45.

For q2 = 37, the observed optimal value for B3 is
q3 = 56, and not the expected value of q3 = 64. To
explain this situation, we should consider that in

making profit, besides quality differentiation with
other competitors (brokers), the cost of buying the
lower-level service is also important. In this case,
broker B3 makes more profit if it chooses q3 = 56
and downgrades the service it obtains from S2 (re-
call Q2 = 60) instead of choosing q3 = 64 and up-
grading the service. Broker B3 can then offer a
quality-price combination that attracts more cus-
tomers, while because of the sufficient gap between
q2 and q3, the competition on the price is not tough.
However, in this situation, broker B2 is upgrading
the service that it obtains from provider S1 (recall
Q1 = 30) and to compete with broker B3, it cannot
offer a high price, and the profit that it makes is
relatively low.

On the other hand, for q2 = 45, the situation
is reversed. B2 downgrades the service that it ob-
tains from provider S2, whileB3 at its optimal point
is upgrading the service. So the combination of
quality-price of broker B2 attracts more customers
which leads to making more profit. Therefore in
this game, besides maximum quality differentiation,
the cost that brokers undergo is also playing an im-
portant role and sometimes brokers should compro-
mise on maximum differentiation to reduce their
cost and make more profit.

Assuming rational players, i.e., the two new bro-
kers pick the quality that maximizes their profit, we
compare the price of the service that such brokers
offer for the case studies of three and four brokers.
In the case of three brokers, we observe that the
optimal quality for broker B2 is at q2 = 50 while
q1 = 10 and q3 = 90. The optimal price for bro-
kers in this setting is p1 = 2092, p2 = 3203 and
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Figure 8: Profit of brokers B2 and B3 in a four-broker setting.
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Figure 9: Price of each broker in a four-broker setting.

p3 = 5447, respectively. When four brokers are
playing the game, the optimal quality for broker B2

is q2 = 45 and for broker B3 is q3 = 66. In this situ-
ation, the optimal prices are p1 = 1746, p2 = 2535,
p3 = 3442 and p4 = 4869. As we can see, the price
of service with quality 10 and 90 drops from 2092
and 5447 to 1746 and 4869, respectively.

4.5. Generalized Market and Main Results

In previous sections we considered markets with
up to four brokers and analyzed them. However,
modeling a real market with more brokers is very
complex. While Equations (3)–(12) can be used to
derive all demands, prices, and profits so as to an-
alyze a market with any number of brokers, as the
number of variables (brokers) increases, the com-
plexity of finding a closed-form solution for each
element of the market increases4. However, we de-
scribe here our main results for a generalized sce-
nario:

• If ∆q (qmax − qmin) increases, there is more
room for brokers to differentiate their quality,
and therefore, prices can be higher; this in turn
leads to higher profit.

• In general, the maximum differentiation prin-
ciple applies to all players, i.e., players make
more profit as the difference between their
quality and rivals’ qualities is higher.

4All code related to analytical and numerical solu-
tions can be found at https://github.com/MaryGhasemi/

Multi-Layer-Market

• An increase in the number of brokers leads to a
lower differentiation between the service qual-
ity offered by brokers; this means that prices
are lower compared to the situation in which
the market has a lower number of brokers.

• When the competition level increases (i.e.,
larger number of brokers, limited quality range,
etc.), the cost of converting quality obtained
from lower-level service providers plays an im-
portant role than what the maximum differ-
entiation principle dictates. This is true for
a broker whose offered service deviates almost
equally from any of the service providers’ qual-
ity, i.e., |qi−Q1| ≈ |qi−Q2|. In this situation,
violating the maximum differentiation princi-
ple in one direction, to get the service that
yields less cost, leads to more profit for the
broker, though at the expense of rival’s profit
(because of a lower quality differentiation).

5. Cooperative Game

In Section 3, we studied the pricing strategy
in a two-layered network market, where service
providers and brokers compete at different levels in
an oligopoly market to maximize their profit. We
modeled a non-cooperative game, in which all play-
ers try to optimize their own profit independently.
The non-cooperative nature of players might have
a negative impact on the profit of players and leads
them to less profit in total. For example, in Fig-
ure 6, while the optimal profit for the new broker
(B2) is to pick a quality at the middle of existing
qualities, the total profit of brokers B1 and B2 is
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maximized when B2 picks a quality close to that of
B3.

In this section, we consider a partially cooper-
ative game. In our setting, there are two service
providers with different qualities at the lower level
and two or more brokers on top of them. When a
new broker enters the market, it chooses the qual-
ity that maximizes its profit; however, it happens
that the quality chosen by the new broker is not
the best for brokers that are already in the market.
Here, we study the oligopoly market at the brokers’
level, with two or more brokers, where a new broker
enters the market and cooperates with one of the
existing brokers rather than competes. We study
the impact of this cooperation on the quality that
the new broker chooses, the prices set by players
in the market (brokers and service providers), and
also customers’ social welfare. While in most situa-
tions, cooperation helps brokers make more profit,
albeit with a negative impact on customers’ utility,
there are cases where both coalition brokers and
customers benefit from the cooperation.

5.1. Profit Sharing Policy

We study a market with two service providers,
and two or more brokers, denoted by Si’s and Bi’s,
respectively, where a new broker enters the market.
Service providers and brokers compete in two dif-
ferent levels in a Bertrand competition to find their
best strategy. We consider the market under dif-
ferent situations where the new broker cooperates
with one of the other brokers. We assume that the
new broker picks a quality in the range of avail-
able quality in the market. We define the demand
function as Equation (2):

Di(p1, p2, ..., pm) =
θ∗i − θ∗i−1

∆θ

where θ∗i = pi+1−pi
qi+1−qi .

The profit function for broker Bi who buys ser-
vices from service provider Sk is also given as Equa-
tion (6). In this cooperative game, when two bro-
kers cooperate, we assume that they maximize the
summation of their profits, i.e., Πi+j = Πi + Πj .

5.1.1. Sharing proportional to demand

One way of sharing the profit between coopera-
tive brokers is to divide it proportional to the de-
mand that each broker supports, i.e., Πi = Πi+j ×
Di

Di+Dj
.

Though this strategy seems to be fair, it leads
to more competition and less profit. This is be-
cause, in this setting, each of cooperating brokers
wants to have more share of the market (demand)
to gain more profit. Although the cooperating bro-
kers want to maximize their total profit, since each
of them wants to maximize its own revenue as well,
this leads to a more competitive market and much
lower prices compared to the non-cooperative mar-
ket. In the end, at steady state, the profit that
each broker gains is less than that under the non-
cooperative game. Therefore, it is not rational for
brokers to cooperate under this policy.

5.1.2. Sharing proportional to profit at optimal
point of non-cooperative game

The other way of splitting the profit between co-
operating brokers is to share it proportional to their
profit at the optimal solution of the non-cooperative
game. This policy also gives more incentive to the
broker that gains more from cooperation. So, for
cooperating broker Bi, the profit is calculated by:

Πi = Πi+j ×
Π′i

Π′i + Π′j

where Π′i and Π′j are non-cooperation profits at
equilibrium. To find the optimal price, like
the non-cooperative game, every broker Bi solves
∂Πi/∂pi = 0. The game in the second stage, be-
tween service providers, is again a Bertrand compe-
tition and follows the same settings as we discussed
in Section 3.

5.2. Experimental Results

We consider two different settings with 3 brokers
and 4 brokers. In both settings, the first and last
brokers are in the market with the lowest and high-
est quality of service, respectively, and the other
brokers enter the market with a quality between
them. We study the effect of cooperation between
different brokers on brokers’ utility as well as users’
utility. In the following subsections, we start with
our main observations followed by a detailed anal-
ysis of our results.

5.2.1. Three Brokers

We consider a setting with 3 brokers, where B1

and B3 are in the market with lowest and highest
quality of services, which in this case are q1 = 10
and q3 = 120, and B2 is entering the market.
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Figure 10: Profit of brokers in cooperative & non-coperative
cases, for varying q2.
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cases, for varying q2.
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Figure 12: Price of service providers in cooperative & non-
cooperative cases, for varying q2.

The demand function is defined like in the non-
cooperative game, as well as the profit function for
providers and brokers. Assuming B2 picks a quality
that maximizes its profit (q2 = 65; see Figure 10),
the profit of brokers in the non-cooperative game at
equilibrium is Π1 = 720, Π2 = 394 and Π3 = 121.
We assume that the cooperating brokers share their
total profit proportional to these profits. There are
two different cooperation scenarios for broker B2:
one is cooperation with B1, and the other is coop-
eration with B3. We analyze both cases to see how
prices and profits change for brokers and providers.

5.2.1.1 B1 and B2 Cooperate

Observation 6. If broker B2 picks a quality close
to B1, all players can offer their services at higher
prices and make more profits.

Observation 7. While all players in the mar-
ket benefit from the cooperation of B1 and B2,
customers pay much higher prices for the same
or lower quality services, compared to the non-
cooperative game.

When B1 and B2 cooperate, if B2 chooses quality
q2 closer to q1, they can offer their services at higher
prices and make a significantly larger profit com-
pared to the non-cooperative game. In this case,
other players, including B3, S1 and S2, can also
offer their services at higher prices, therefore the
market is equilibrated at higher prices. If broker B2

picks a service with higher quality, i.e., gets closer
to the quality of broker B3, the competition be-
tween B2 and B3 gets more serious. Consequently,
B2 should set its price in a lower range, and so other
players should do the same. The closer q2 gets to
q3, the competition gets more tense and the prices
get closer to the prices in the non-cooperative game.
The left plots in Figures 10 and 11 present the profit
and price of brokers, and Figure 12 shows the price
of providers, when B1 and B2 cooperate. The plots
in the center illustrate the non-cooperative compe-
tition. As we observe in Figure 10, the optimal
point for broker B2 is at quality q2 = 13 where its
profit is maximized. As Figure 13 shows, since bro-
ker B1 has the lowest quality and price, it does not
lose its share of the market.

5.2.1.2 B2 and B3 Cooperate

Observation 8. B2 cannot pick a quality close to
B3, nor they can set their prices as high as the
prices in the B1-B2 cooperation.
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Figure 13: Demand of brokers in cooperative & non-
cooperative cases, for varying q2.
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Figure 14: Demand of providers in cooperative & non-
cooperative cases, for varying q2.

Observation 9. At the optimal point for B2 and
B3, while they make more profit, they also offer
their services at lower prices, compared to the equi-
librium point of the non-cooperative market. The
profit comes mostly from reducing the cost of ob-
taining the service from lower-level providers.

In the case of collaboration between B2 and B3,
unlike the collaboration of B1 and B2, if B2 picks
a quality close to q3, they cannot set high prices,
otherwise no one would prefer to buy from B3 and
brokerB3 is out of market. Therefore, the prices are
close to those of the non-cooperative market. On
the other hand, if broker B2 chooses a lower quality
with fair difference from q3, it gets into competition
with broker B1. Therefore, in this collaboration
game, the prices cannot be set too high, because
either it causes broker B3 to get out of the market,
or B2 and B1 get into competition to increase their
share of the market. However, in this setting, the
price of service providers is lower than that of the
non-cooperative game. This is because the prices
chosen by B2 and B3 lead them to less demand,
and consequently less demand for S2 as well (right
side plots in Figures 13 and 14). This situation
makes S2 lower its price to attract more demand,
which makes S1 pick a lower price as well. The
best strategy for B2 and B3 is to buy from different
service providers, so force them into more compe-
tition. Also, the optimal quality for broker B2 is
at the highest quality in which buying from S1 still
has less cost than buying from S2. At this quality,
the providers’ prices equilibrate at the lowest range
and brokers can benefit from that.

Table 1 presents the prices and profits of brokers

Non-Coop
B1 & B2

Cooperate
B2 & B3

Cooperate

q2∗ 65 13 43
p1 2840 6761 138% 1522 −46.5%
p2 4664 6907 640% 2711 −13%
p3 8338 12520 50% 7199 −14%
Π1 720 2373 229% 512 −29%
Π2 394 1299 229% 969 145%
Π3 121 1021 743% 286 136%
r1 2974 3099 4% 856 −72%
r2 3446 4428 28% 1678 −52%
U1 403 688 69% 472 16%
U2 2737 3082 12% 919 −66%

Table 1: Prices and profits of brokers and service providers
at optimal quality q2 in different scenarios and percentages
of change compared to the non-cooperative case.

and service providers at the quality of q2 in which
the profit of broker B2 is optimized, in different
situations, i.e., in the non-cooperative case and in
the case of cooperation of B2 with B1 or B3. It
also shows the percentages of change compared to
the non-cooperative values. For the price and profit
of broker B2, since the optimal quality q2 changes
in different situations, the shown percentages are
based on changes per unit of quality. As we observe
it Table 1, every player benefits from cooperation
of B1 and B2 by setting a higher price. However, in
the case of collaboration between B2 and B3, only
B2, B3 and S1 have a higher profit compared to the
non-cooperative case, but it is better economically
for customers as prices are lower.
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Figure 15: Price of brokers in cooperative & non-cooperative
cases, for varying α.

5.2.2. Four Brokers

In this setting, we have four brokers along with
two service providers S1 and S2 with Q1 = 30 and
Q2 = 60. Brokers B1 and B4 are in the market
with the lowest and highest quality of q1 = 10 and
q4 = 150, and B2 and B3 enter the market choos-
ing a quality between q1 and q4. Without loss of
generality, we assume that q2 < q3. To reduce the
complexity of varying q2 and q3, we introduce a
new variable α and set q2 = q1 +α and q3 = q4−α.
We vary α from 8 to q4−q1

2 ; α is used to control
the quality gap between q1 and q2, and q3 and q4.5

Then, we monitor the changes in the market as B2

and B3 change their qualities away from the qual-
ity endpoints (q1 and q4) and toward the center,
where they get closer to each other. Since there
are two brokers changing their qualities, we do not
have any single optimal point in the four-brokers
game, as we have in the three-brokers game, so we
compare the result of cooperation with that of the
non-cooperative game in the same setting.

We consider the market in different situations
where there is no cooperation, or there is cooper-
ation between B1 and B2, B2 and B3, or B3 and
B4.

5.2.2.1 B1 and B2 cooperate

Observation 10. When α is small, i.e., q1 and q2

are close to each other, B1 and B2 can offer their
services at higher prices and make more profit.

5If q2 gets too close to q1, or q3 gets too close to q4, B1

or B4 are out of the market. Thus, α starts from a value so
everyone can compete in the market.
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Figure 16: Price of providers in cooperative & non-
cooperative cases, for varying α.

Observation 11. When the structure of the bro-
kers’ market imposes a tense competition in the ser-
vice providers’ market, brokers and customers ben-
efit from this competition; while brokers make profit
as a result of decrease in the cost of buying services,
customers buy services from brokers at lower prices.

In this setting, when the qualities of service of
B1 and B2 are close to each other, they can set
a high price for their services. Other brokers also
raise their prices. As B2 increases its quality q2,
and q2 and q3 get closer to each other, the price of
brokers drops. But the drop in prices of B3 and
B4 is more than that of B1 and B2’s. Indeed, B1

and B2 make profit by having higher prices, com-
pared to the non-cooperative game, while prices of
B3 and B4 are even lower than their prices in the
non-cooperative game (Figure 15 up right plot); B3

and B4 make more profit by attracting more de-
mand, which is also the case for service provider
S2. As the price of S2 decreases and B2 picks
a higher quality, the competition between S1 and
S2 gets more intense and they decrease their prices
(Figure 16). This situation holds until B2 switches
from S1 to S2. Figure 17 shows the profit of brokers
in the non-cooperative game and under this B1-B2

cooperation.

5.2.2.2 B2 and B3 cooperate

Observation 12. While quality differentiation be-
tween competitors is not large, the effect of com-
petition outweighs the effect of cooperation. This
is the scenario when ∆qcoop � ∆qcomp, where
∆qcoop is the quality differentiation between coop-
erative brokers and ∆qcomp is the quality differenti-
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B2 cooperation game, for varying α.
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Figure 18: Profit of brokers in non-cooperative game and B2-
B3 cooperation game, for varying α.
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Figure 19: Profit of brokers in non-cooperative game and
B3-B4 cooperation game, for varying α.

ation between cooperative brokers and other neigh-
boring brokers.

In the case of cooperation of B2 and B3, when α
is small, i.e. q2 is close to q1 and q3 is close to q4, B2

and B3 are in high competition with B1 and B4, re-
spectively; therefore, their cooperation have almost
no effect on the system and the prices are almost
the same as the non-cooperative game (Figure 15
down left plot). As α gets bigger, i.e. q2 and q3

get closer to each other, the competition with their
rivals is less intense and they can set their price
to a higher value and the market is equilibrated
at higher prices. Figure 18 compares the brokers’
profit in the non-cooperative game and under this
B2-B3 cooperation setting.

5.2.2.3 B3 and B4 cooperate

Observation 13. When B3 and B4 cooperate, as α
increases, as long as B3 is not in competition with
B2, their total profit remains high.

In this configuration, when α is small, i.e. q3 and
q4 are close to each other, B3 and B4 can set their
price to higher values, but their prices are not as
high as B1 and B2 set in their cooperation (com-
pared to the non-cooperative case); otherwise B4 is
out of the market. As α increases, unlike the other
cooperations, the total profit of B3 and B4 remains
high. This is because when α increases, the qual-
ity differentiation between B1 and B2 increases and
they can then increase their prices. Meanwhile, the
quality differentiation between B3 and B4 also in-
creases and they can attract more share of the mar-
ket. When q3 gets closer to q2 and there is more
competition between B2 and B3, the prices and
profits get closer to those in the non-cooperative
game. Figure 19 shows the brokers’ profit in the
non-cooperative game and the B3-B4 cooperation
game.

5.2.2.4 Users’ Utility

Observation 14. Customers’ welfare is higher
when competition is tough.

Observation 15. If brokers can impose more com-
petition on the lower-level providers, both brokers
and customers benefit from that competition.

To compare the customers’ welfare in different
cases, we calculate the summation of users’ utility
(θqi−pi) and normalize it by dividing by maximum
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cooperative & cooperative games, for varying α.
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cooperative & cooperative games, for varying α.

total utility, which is obtained when all customers
buy service from the highest quality broker (B4 in
this case) at zero price. Also, we define a fairness

metric as (
∑
Di)

2

n×
∑
D2

i
, where Di is the demand of bro-

ker i and n is the number of brokers. This metric
shows us how evenly the market share is distributed
among brokers. Specifically, this fairness metric
approaches 1 when demands are equal, and ap-
proaches zero otherwise [74]. Figure 20 presents the
customers’ welfare in different games with or with-
out cooperation, for two different markets with dif-
ferent quality ranges, where in the left plot q4 = 120
and in the right plot q4 = 150. For the non-
cooperative game, when α is small, the competition
of B1-B2 and B3-B4 is intense and their prices are
low, so users benefit from this competition. The
same story is true for B2-B3 cooperation, when α
is small; however, when q2 and q3 get close to each
other, the users’ welfare is less than that in other
games. As we can see in Figure 20, B1-B2 cooper-
ation game has the lowest users’ welfare, except for
some values of α, when B2 buys service from S1,
and there is intensive competition between S1 and
S2. In this situation, as we explained above (for
B1-B2 cooperation), S2 and consequently B3 and
B4 make more profit by attracting more market de-
mand instead of by setting higher prices, therefore
the users’ welfare can be higher than other cases.

Figure 21 shows the fairness measure of market
share for brokers. It is clear that when there is no
cooperation and brokers have a fair difference be-
tween their service qualities, and also there is com-
petition between service providers (B1 and B2 buy
from S1, and B3 and B4 buy from S2), the market

is almost evenly shared among brokers.

5.3. General Results for Partial Cooperative Game

The complexity of the partial cooperative market
is the same as we would have in a competitive mar-
ket. While Equations (3)–(12) work for any number
of brokers, the closed-form solutions are complex.
However, we describe some general results that hold
for a partial cooperative market with a number of
brokers greater than two:

• In a partial cooperative market, all brokers
benefit from the ongoing cooperation; however,
customers pay much higher prices for the same
or lower quality of service, compared to the
non-cooperative game.

• The cooperation of B1 (the broker with the
lowest quality) with B2 (the broker with the
next quality level) yields the highest profit to
all players, compared to cooperation between
other brokers. This happens because B1 and
B2 can increase their price much more than
other players in cooperation without getting
out of the market; therefore other players also
can set a higher price.

• If the quality differentiation between competi-
tors is not large, cooperation has little effect
on increasing profit for (cooperating) brokers.

6. Conclusion

In this paper, we developed a game-theoretic
model that captures the interaction among play-
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ers in a multi-level market. In our model, bro-
kers, as the intermediaries between users and ser-
vice providers, adapt the quality of the service that
they get from lower-level providers so as to attract
more customers and maximize their profit. The
game consists of two service providers, two, three
or four brokers, and users, though we study more
extensively the case with two brokers. Numerical
results show that the more differentiation between
the quality of service offered by brokers, the higher
is their profit. However when the competition is in-
tense, besides quality differentiation, cost plays an
important role and forces brokers to compromise
on quality differentiation with their competitors to
reduce cost and make more profit. An interesting
result in the two brokers game is that although play-
ers compete for more profit, the competition only
affects their market share; the profit increases for
one player if it increases for the other one. But this
is not the case for more brokers. When there are
more than two brokers, the market is more compet-
itive and brokers should offer their services at lower
prices to be able to stay in the market.

We also considered a partial cooperative game
where incoming brokers decide to cooperate with
one of the brokers in the market; in this game, coop-
erative players maximize their total profit instead of
their own profit. The numerical results show that
in most of the cases, all players benefit from the
cooperation of a subset of players; indeed, cooper-
ation means less competition. However, the ben-
efit from cooperation depends on the quality dif-
ferentiation between cooperating brokers and also
the quality differentiation of cooperating brokers
with other brokers they compete with. The highest
profit occurs when the service qualities of coopering
brokers are close to each other, with a substantial
quality difference from other brokers. Also, players
make more profit when the incoming broker cooper-
ates with the broker with lowest quality rather than
cooperates with the broker with highest quality; in
cooperation with the high quality broker, if they set
their price too high, the high quality broker loses its
market share and goes out of the market. Further-
more, when the service quality offered by brokers is
distributed almost uniformly, the cooperation does
not have much impact on the market.

Although in most cooperative settings, customers
do not benefit from brokers’ cooperation, there are
situations where cooperation can yield lower prices.
In these cases, the combination of brokers’ service
quality and their market shares impose a high com-

petition on the service providers’ level, and as a
result of such competition, they lower their price.
Consequently, the cost of providing services is re-
duced for brokers and they can make more profit
by incurring less cost.

We believe our model and findings can guide
the design and analysis of current and emerging
brokered (service-oriented) systems, including Soft-
ware Defined eXchanges (SDX) stitching (virtual or
physical) resources from multiple domains to offer
a range of software defined services, e.g., a video
marketplace.
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Appendix:
Analytical Solution for the case of

Two-Brokers, Two-Service Providers

In this appendix, we show the detailed derivation
of our analytical solution for the particular case of
two service providers S1 and S2, and two brokers B1

and B2. As discussed in Section 3, we assume that
customers have different quality preferences, mod-
eled by θq − p, where θ is the customer’s marginal
willingness to pay for quality q, and p is the price
of service. Under these assumptions, the indifferent
customers, θ∗ satisfy:

θ∗q1 − p1 = θ∗q2 − p2 ⇔ θ∗ =
p2 − p1

q2 − q1
.

If we assume a uniformly distributed θ, the de-
mand for each broker, B1 and B2, is given by:

D1(p1, p2) =
θ∗ − θmin

∆θ
=

1

∆θ

(
p2 − p1

q2 − q1
− θmin

)
D2(p1, p2) =

θmax − θ∗

∆θ
=

1

∆θ

(
θmax −

p2 − p1

q2 − q1

)
where ∆θ ≡ θmax − θmin.

Substituting the demand expressions in the bro-
kers’ profit equations:

Πi = piDi −
qiDi

Qj
rj − ciDi(Qj − qi)2

and given Theorem 1 that B1 buys service from
S1, and B2 buys service from S2, we obtain:

Π1 =
p1

∆θ

(
p2 − p1

q2 − q1
− θmin

)
− q1r1

∆θQ1

(
p2 − p1

q2 − q1
− θmin

)
−

c(Q1 − q1)2

∆θ

(
p2 − p1

q2 − q1
− θmin

)
and

Π2 =
p2

∆θ

(
θmax −

p2 − p1

q2 − q1

)
− q2r2

∆θQ2

(
θmax −

p2 − p1

q2 − q1

)
−

c(Q2 − q2)2

∆θ

(
θmax −

p2 − p1

q2 − q1

)
.

To find the equilibrium in the broker-level game,
we need to find the optimal price of brokers. To do
so, we solve the ∂Πi/∂pi = 0 system. Calculating
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∂Πi/∂pi for every i, we have:

∂Π1/∂p1 =
1

∆θ

(
p2 − p1

q2 − q1
− θmin

)
− 1

(q2 − q1)
× p1

∆θ
+

1

(q2 − q1)
× q1r1

∆θQ1
+

1

(q2 − q1)
× c(Q1 − q1)2

∆θ

and

∂Π2/∂p2 =
1

∆θ

(
θmax −

p2 − p1

q2 − q1

)
− 1

(q2 − q1)
× p2

∆θ
+

1

(q2 − q1)
× q2r2

∆θQ2
+

1

(q2 − q1)
× c(Q2 − q2)2

∆θ
.

Now, the solution of the system of two equations,
i.e., ∂Πi/∂pi = 0, yields the optimal price for both
brokers (shown in Equations (7) and (8)):

p1 =
1

3
((q2 − q1) (θmax − 2θmin) +

2q1r1

Q1
+

q2r2

Q2
+ 2c (q1 −Q1) 2 + c (q2 −Q2) 2)

p2 =
1

3
((q2 − q1) (2θmax − θmin) +

q1r1

Q1
+

2q2r2

Q2
+ c (q1 −Q1) 2 + 2c (q2 −Q2) 2)

Now the brokers’ prices, p1 and p2, are a function
of the brokers’ and providers’ service qualities, and
providers’ prices r1 and r2. The next step is to plug
them into Di’s to obtain the demand as a function
of rj ’s (shown in Equations (9) and (10)):

D1 =
1

3∆θ
(θmax − 2θmin) +

q2r2
Q2
− q1r1

Q1
− c (q1 −Q1) 2 + c (q2 −Q2) 2

3∆θ (q2 − q1)

D2 =
1

3∆θ
(2θmax − θmin) +

q1r1
Q1
− q2r2

Q2
+ c (q1 −Q1) 2 − c (q2 −Q2) 2

3∆θ (q2 − q1)

Now, D1 and D2 are a function of the service
providers’ prices r1 and r2. They can be substituted
in the providers’ profit and, following the same pro-
cess, the optimal price of providers can be obtained
in terms of providers’ and brokers’ service qualities.
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