
Galois Field in Cryptography

Christoforus Juan Benvenuto

May 31, 2012

Abstract

This paper introduces the basics of Galois Field as well as its im-
plementation in storing data. This paper shows and helps visualizes
that storing data in Galois Fields allows manageable and effective
data manipulation, where it focuses mainly on application in com-
puter cryptography. Details on the algorithm for Advanced Encryp-
tion Standard (AES), which is an examples of computer cryptography
that utilizes Galois Field, will also be included.

Contents

1 Introduction 2

2 Preliminaries 2
2.1 Galois Field . 2
2.2 Binary System . 3
2.3 Bit and Byte . 3
2.4 ASCII . 3
2.5 Finite Field Arithmetic . 4

2.5.1 Addition and Subtraction 4
2.5.2 Multiplication and Multiplicative Inverse 5

3 Application in Cryptography 7
3.1 Advanced Encryption Standard (AES) 7

3.1.1 State . 7
3.1.2 SubBytes . 8
3.1.3 ShiftRows . 9
3.1.4 MixColumns . 9
3.1.5 AddRoundKey . 10

1

1 Introduction

Galois Field, named after Évariste Galois, also known as finite field, refers to
a field in which there exists finitely many elements. It is particularly useful in
translating computer data as they are represented in binary forms. That is,
computer data consist of combination of two numbers, 0 and 1, which are the
components in Galois field whose number of elements is two. Representing
data as a vector in a Galois Field allows mathematical operations to scramble
data easily and effectively.

2 Preliminaries

2.1 Galois Field

The elements of Galois Field gf(pn) is defined as

gf(pn) = (0, 1, 2, . . . , p− 1) ∪
(p, p + 1, p + 2, . . . , p + p− 1) ∪
(p2, p2 + 1, p2 + 2, . . . , p2 + p− 1) ∪ . . . ∪
(pn−1, pn−1 + 1, pn−1 + 2, . . . , pn−1 + p− 1)

where p ∈ P and n ∈ Z+. The order of the field is given by pn while p is
called the characteristic of the field. On the other hand, gf , as one may have
guessed it, stands for Galois Field. Also note that the degree of polynomial
of each element is at most n− 1.

Example

gf(5) = (0, 1, 2, 3, 4)

which consists of 5 elements where each of them is a polynomial of degree 0
(a constant) while

gf(23) = (0, 1, 2, 2 + 1, 22, 22 + 1, 22 + 2, 22 + 2 + 1)

= (0, 1, 2, 3, 4, 5, 6, 7)

which consists of 23 = 8 elements where each of them is a polynomial of
degree at most 2 evaluated at 2.

2

2.2 Binary System

In the binary numeral system or base-2 number system, we represents each
value with 0 and 1. To convert a decimal numeral system or base-10 number
system into binary system, we need to represent a decimal in terms of sums
of an2n. That is, if x is the said decimal number then we wish to have

x =
∑
n∈N

an2n

The coefficients an is then written in descending order of n and all leading
zeros are then omitted. The final result becomes the binary representation
of the decimal x. Ultimately, binary system offers an alternative way of
representing the elements of a Galois Field. Both the polynomial and binary
representation of an element have their own advantages and disadvantages.

Example

19 = . . . + 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20

so the binary representation of 19 is 10011 while the elements of gf(23) in
binary are

gf(23) = (001, 010, 011, 100, 101, 110, 111)

2.3 Bit and Byte

Each 0 or 1 is called a bit, and since a bit is either 0 or 1, a bit is an element
of gf(2). There is also a byte which is equivalent to 8 bits thus is an element
of gf(28). Since we will be focusing on computer cryptography and as each
datum is a series of bytes, we are only interested in Galois Field of order 2
and 28 in this paper.
Because computer stores data in bytes, each binary number must be 8 bits
long. For number that is less than 8 bits long, leading zeros are added.
It follows as well that the biggest number 1 byte can store is 11111111 =
27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 = 255. Following from the preceding
example, 19 is stored as 00010011 in byte.

2.4 ASCII

ASCII stands for American Standard Code for Information Interchange.
Since there are exactly 255 characters in ASCII, we can uniquely assign

3

each character to an element in gf(28) or represent it as a byte. The most
frequently used ASCII codes and their values are given in the following table

Dec Chr Dec Chr Dec Chr Dec Chr Dec Chr Dec Chr
32 Space 48 0 64 @ 80 P 96 ‘ 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ∧ 110 n 126 ∼
47 / 63 ? 79 O 95 111 o

where Dec indicates the decimal representation (which can be converted to
binary and stored as a byte) and Chr stands for character.

2.5 Finite Field Arithmetic

Unlike working in the Euclidean space, addition (and subtraction) and mul-
tiplication in Galois Field requires additional steps.

2.5.1 Addition and Subtraction

An addition in Galois Field is pretty straightforward. Suppose f(p) and g(p)
are polynomials in gf(pn). Let A = an−1an−2 . . . a1a0, B = bn−1bn−2 . . . b1b0,
and C = cn−1cn−2 . . . c1c0 be the coefficients of f(p), g(p), and h(p) = f(p) +
g(p) respectively. If ak, bk, and ck are the coefficients of pk in f(p), g(p), and
h(p) respectively then

ck = ak + bk (mod p)

Similarly, if h(p) = f(p)− g(p) then

ck = ak − bk (mod p)

where 0 ≤ k ≤ n − 1. Since computer works in gf(28), if ak and bk refer to
the kth bit in the bytes we wish to add then ck, the kth bit in the resulting

4

byte, is given by
ck = ak + bk (mod 2)

Since 0 + 1 = 1 + 0 = 1 (mod 2) = 1 and 0 + 0 = 0 (mod 2) = 1 + 1 =
2 (mod 2) = 0, we may think of addition as exclusive-or operation which is
also known as XOR operation. That is, XOR operation returns 0 if both
entries are equal and returns 1 otherwise which also means that subtraction
and addition is the same in Galois Field whose characteristic field is 2. Due
to the nature of Galois Field, addition and subtraction of two bytes will not
go any bigger than 11111111 = 255, the biggest value one byte can store,
and is therefore a safe operation.

Example

Suppose we are working in gf(28), then 83 + 249 is

83 + 249 = (26 + 24 + 21 + 20) + (27 + 26 + 25 + 24 + 23

= 27 + 2 · 26 + 25 + 2 · 24 + 23 + 21 + 2 · 20

= 27 + 25 + 23 + 21

= 169

Alternatively, from binary numeral system perspective,

83 + 249 = 01010011 + 11111001

= 10101010

= 169

and the results coincide.

2.5.2 Multiplication and Multiplicative Inverse

Multiplication in Galois Field, however, requires more tedious work. Sup-
pose f(p) and g(p) are polynomials in gf(pn) and let m(p) be an irreducible
polynomial (or a polynomial that cannot be factored) of degree at least n in
gf(pn). We want m(p) to be a polynomial of degree at least n so that the
product of two f(p) and g(p) does not exceed 11111111 = 255 as the product
needs to be stored as a byte. If h(p) denotes the resulting product then

h(p) = (f(p) · g(p)) (mod m(p))

On the other hand, the multiplicative inverse of f(p) is given by a(p) such
that

(f(p) · a(p)) (mod m(p)) = 1

5

Note that figuring out the product of two polynomials and the multiplicative
inverse of a polynomial requires both reducing coefficients modulo p and re-
ducing polynomials modulo m(p). The reduced polynomial can be calculated
easily with long division while the best way to compute the multiplicative
inverse is by using Extended Euclidean Algorithm. The details on the calcu-
lations in gf(28) is best explained in the following example.

Example

Suppose we are working in gf(28) and we take the irreducible polynomial
modulo m(p) to be p8 + p6 + p5 + p1 + p0. To calculate 84 · 13, we need to go
through several steps. First, we compute the product of the polynomial and
reduce the coefficients modulo 2.

84 · 13 = ((26 + 24 + 22) · (23 + 22 + 20)) (mod m(p))

= (29 + 28 + 27 + 2 · 26 + 25 + 2 · 24 + 22) (mod m(p))

= (29 + 28 + 27 + 25 + 22) (mod m(p))

Then we use long division to compute the reduced polynomial as follows

Remainder Quotient
29 + 28 + 27 + 25 + 22

28 + 26 + 25 + 21 + 20

20 21 + 20

Where the last entry in the first column is the product we seek for. Since
the product is 1, it follows that 84 and 13 are multiplicative inverse pairs.

Example

Now pretend that we do not know the multiplicative inverse of 84. Then
to calculate the multiplicative inverse we will use Extended Euclidean Algo-
rithm. Unlike long division, we need to keep track of the auxiliary when we
work with Extended Euclidean Algorithm as follows

Remainder Quotient Auxiliary
28 + 26 + 25 + 21 + 20 0

26 + 24 + 22 1
25 + 24 + 21 + 20 22 22

20 21 + 20 23 + 22 + 1

The first two rows in the Remainder column are always the modulo poly-
nomial followed by the polynomial we wish to invert. The first two rows in

6

the Auxiliary are always 0 and 20. The remainder and the quotient in row
n is then calculated from the division of the remainders in row n − 1 and
n− 2 while the auxiliary in row n is given by the sum of the auxiliary in row
n − 2 and the product of the quotient and the auxiliary in row n − 1 until
the last remainder equals to 20. The final entry in Auxiliary happens to be
the multiplicative inverse of the product, thus the multiplicative inverse of
84 is 23 + 22 + 20 = 13 which agrees with the preceding example.

3 Application in Cryptography

The most popular and widely used application of Galois Field is in Cryptog-
raphy. Since each byte of data are represented as a vector in a finite field,
encryption and decryption using mathematical arithmetic is very straight-
forward and is easily manipulable.
In the 1970’s, IBM developed Data Encryption Standard (DES). However,
given that DES uses humble 56-bit key and technology advances rapidly, a
supercomputer was able to break the key in less than 24 hours thus a more
sophisticated algorithm was necessary. In 2001, Vincent Rijmen and John
Daemon came up with a more complicated algorithm called Rijndael and it
has been the Advanced Encryption Standard (AES) ever since.

3.1 Advanced Encryption Standard (AES)

Before data scrambling and encryption can begin, the data must first be ar-
ranged in a state or a matrix of bytes. The algorithm for Advanced Encryp-
tion Standard (AES) consists of smaller, sub-algorithms namely SubBytes,
ShiftRows, MixColumns, and AddRoundKey, where each method will be ex-
plained in details below. Note that the following explanation only applies to
AES with 128-bit key. The algorithm for other variations such as AES with
192-bit and 256-bit keys slightly differs.

3.1.1 State

AES breaks data into states or matrix of bytes of predetermined size and
encrypt every state independently of each other. Putting together bytes
into a state has no cryptographic significance, yet it is an important process
without whom other operations cannot be conducted. In Rijndael with a
128-bit key, an array or a matrix with 4 rows and 4 columns is formed where
each entry is a byte or 8 bits so that there are essentially 16 bytes in total.
Additionally, we may also think of a 128-bit state space as a vector in gf(28)16

7

where each component of the vector is a byte. If A denotes the said matrix
and a(i,j) for 0 ≤ i, j ≤ 3 refers to each element in the matrix then a state is
defined to be

A =


a(0,0) a(0,1) a(0,2) a(0,3)
a(1,0) a(1,1) a(1,2) a(1,3)
a(2,0) a(2,1) a(2,2) a(2,3)
a(3,0) a(3,1) a(3,2) a(3,3)


3.1.2 SubBytes

In this method each byte, each element in the matrix is replaced using the Ri-
jndael’s S-Box. This method is broken down into two stages. In the first stage
each byte is replaced with its multiplicative inverse. In case of a byte whose
value is 0 which does not have a multiplicative inverse, the byte remains
0. The second stage involves performing invertible affine transformation on
each byte. In this case, if x = x0x1x2 . . . x7x8 is a vector whose elements are
the binary representation of the byte in ascending order of power, then the
output would be A · x+ b where A is an 8× 8 matrix and b is a vector which
represents the coefficients (again, in ascending order) of some constant. Ri-
jndael specifies the modulo polynomial m(p) for finding the multiplicative
inverse to be m(p) = p8 + p4 + p3 + p1 + p0 while the affine transformation is
defined to be

A · x + b =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7


+



1
1
0
0
0
1
1
0


where b = 26 + 25 + 21 + 20 = 99. Note that since multiplicative inverse
comes in pairs and the affine transformation is invertible, it is possible to
revert scrambled data back to its original state so that decryption can be
performed to retrieve the data. If y = y0y1y2 . . . y7y8 is the input byte, the

8

inverse affine transformation is as follow

C · y + d =



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0





y0
y1
y2
y3
y4
y5
y6
y7


+



1
0
1
0
0
0
0
0


3.1.3 ShiftRows

ShiftRows is perhaps the simplest operation to scramble data. Like the name
suggest, ShiftRows shifts row n to the left by n−1 unit, so that the first row
remains unchanged while the second row is shifted to the left by 1, third row
by 2, and fourth row by 3. That is, if we let A and A’ to denote the state
before and after performing ShiftRows then if A is given by

A =


a(0,0) a(0,1) a(0,2) a(0,3)
a(1,0) a(1,1) a(1,2) a(1,3)
a(2,0) a(2,1) a(2,2) a(2,3)
a(3,0) a(3,1) a(3,2) a(3,3)


then A’ is given by

A′ =


a(0,0) a(0,1) a(0,2) a(0,3)
a(1,1) a(1,2) a(1,3) a(1,0)
a(2,2) a(2,3) a(2,0) a(2,1)
a(3,3) a(3,0) a(3,1) a(3,2)


Where we can deduce by observation that this operation is easily invertible.

3.1.4 MixColumns

The next method messes with columns instead of rows. MixColumns takes
each column in the state and perform linear transformation on it. Since each
column has 4 rows, the matrix transformation has to be 4× 4 and is defined
as follow

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


9

And since linear transformation has an inverse, this operation is invertible.
In fact, the matrix used to revert the state back to its original standing is
given by

M−1 =


14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14


3.1.5 AddRoundKey

AddRoundKey is the most important stage as it is the stage that provides
uniqueness to the encryption thus is inevitably a complex operation by it-
self. The output of AddRoundKey fully depends on the key or the password
specified by the user. In this stage a subkey, which is the same size as the
state, is computed from the main key using Rijndael’s Key Schedule. Once
a subkey is derived, the sum of the subkey and the state is calculated. This
process consists of three parts: Rotate, Rcon, and SubByes. The first part is
to rotate or to shift the bytes that form the keyword 8 bits to the left, which
is similar to what happens to the second row in ShiftRows. The second part
is to apply sub-operation called Rcon; And the third part is to perform Ri-
jndael’s S-Box whose details have been dissected in SubBytes. Another step
of this operation is to expand the main key until we have enough subkeys.
However this paper will not tackle this process further due to its complexity.

Example

Suppose we wish to encrypt a sentence or a string which we may think of as
an array of ASCII characters. For simplicity sake, let us try to encrypt ”Fun
Cryptography” which consists of exactly 16 characters with AES. Converting
each character to its respective ASCII code and assigning all bytes into a state
yields

70 117 110 32
67 114 121 112
116 111 103 114
97 112 104 121

 =


01000110 01110101 01101110 00010000
01000011 01110010 01111001 01110000
01110100 01101111 01100111 01110010
01100001 01110000 01101000 01111001


Again to keep the example simple, we will perform each sub-algorithm once.
SubBytes then scramble the above state to

01011010 10011101 10011111 10110111
00011010 01000000 10110110 01010001
10010010 10101000 10000101 01000000
11101111 01010001 01000101 10110110


10

followed by ShiftRows
01011010 10011101 10011111 10110111
01000000 10110110 01010001 00011010
10000101 01000000 10010010 10101000
10110110 11101111 01010001 01000101


and lastly MixColumns, omitting AddRoundKey

11100111 00011000 00100100 01110000
00101010 10101011 00111001 01100011
00010101 01100101 11110111 10100111
10101011 11110110 00000011 10100100

 =


231 24 36 112
42 171 57 99
21 101 247 167
171 246 3 164


which does not quite translate to a human readable sentence. The decryption
process is as simple as reading the above steps backwards.

References

[1] Harris Nover, Algebraic Cryptanalysis of AES, 1-6.

[2] National Institute of Standards and Technology, Advanced Encryption
Standard, FIPS 197 (2011).

11

