CS:APP Chapter 4 Computer Architecture

Instruction Set Architecture

Randal E. Bryant adapted by Jason Fritts

http://csapp.cs.cmu.edu

Hardware Architecture - using Y86 ISA

For learning aspects of hardware architecture design, we'll be using the Y86 ISA

- x86 is a CISC language
 - too complex for educational purposes

Y86 Instruction Set Architecture

- a pseudo-language based on x86 (IA-32)
- similar state, but simpler set of instructions
- simpler instruction formats and addressing modes
- more RISC-like ISA than IA-32

Format

- 1–6 bytes of information read from memory
 - can determine instruction length from first byte

CS:APP2e

CISC Instruction Sets

- Complex Instruction Set Computer
- Dominant style through mid-80's

Stack-oriented instruction set

- Use stack to pass arguments, save program counter
- Explicit push and pop instructions

Arithmetic instructions can access memory

- addl %eax, 12(%ebx,%ecx,4)
 - requires memory read and write
 - Complex address calculation

Condition codes

■ Set as side effect of arithmetic and logical instructions

Philosophy

Add instructions to perform "typical" programming tasks

RISC Instruction Sets

- Reduced Instruction Set Computer
- Internal project at IBM, later popularized by Hennessy (Stanford) and Patterson (Berkeley)

Fewer, simpler instructions

- Might take more to get given task done
- Can execute them with small and fast hardware

Register-oriented instruction set

- Many more (typically 32) registers
- Use for arguments, return pointer, temporaries

Only load and store instructions can access memory

■ Similar to Y86 mrmovl and rmmovl

No Condition codes

■ Test instructions return 0/1 in register

Y86 Instruction Set and Formatting

Y86 Processor State

RF: Program registers

%eax	%esi
%ecx	%edi
%edx	%esp
%ebx	%ebp

CC: Condition codes

- Program Registers
 - Same 8 as with IA32. Each 32 bits
- Condition Codes
 - Single-bit flags set by arithmetic or logical instructions

» ZF: Zero

SF:Negative

OF: Overflow

- Program Counter
 - Indicates address of next instruction
- **Program Status**
 - Indicates either normal operation or some error condition
- Memory
 - Byte-addressable storage array
 - Words stored in little-endian byte order

Y86 Instruction Set #2

Y86 Instruction Set #3

Encoding Registers

Each register has 4-bit ID

%eax	0
%ecx	1
%edx	2
%ebx	3

%esi	6
%edi	7
%esp	4
%ebp	5

■ Same encoding as in IA32

Register ID 15 (0xF) indicates "no register"

■ Will use this in our hardware design in multiple places

Instruction Example

Addition Instruction

- Add value in register rA to that in register rB
 - Store result in register rB
 - Note that Y86 only allows addition to be applied to register data
- Set condition codes based on result
- e.g., addl %eax, %esi Encoding: 60 06
- Two-byte encoding
 - First indicates instruction type
 - Second gives source and destination registers

Arithmetic and Logical Operations

- Refer to generically as "OP1"
- Encodings differ only by "function code"
 - Low-order 4 bytes in first instruction word
- Set condition codes as side effect

Move Operations

- Like the IA32 mov1 instruction
- Simpler format for memory addresses
- Give different names to keep them distinct

Move Instruction Examples

Y86	Encoding
	Y86

movl \$0xabcd, %edx	irmovl \$0xabcd, %edx	30 f2 cd ab 00 00
movl %esp, %ebx	rrmovl %esp, %ebx	20 43
movl -12(%ebp),%ecx	mrmovl -12(%ebp),%ecx	50 15 f4 ff ff ff
movl %esi,0x41c(%esp)	rmmovl %esi,0x41c(%esp)	40 64 1c 04 00 00

movl \$0xabcd, (%eax)	_
<pre>movl %eax, 12(%eax,%edx)</pre>	_
movl (%ebp,%eax,4),%ecx	_

- 14 - CS:APP2e

Jump Instructions

Jump Unconditionally

- Refer to generically as "jxx"
- Encodings differ only by "function code"
- Based on values of condition codes
- Same as IA32 counterparts
- Encode full destination address
 - Unlike PC-relative addressing seen in IA32

Stack Operations

- Decrement %esp by 4
- Store word from rA to memory at %esp
- Like IA32

- Read word from memory at %esp
- Save in rA
- Increment %esp by 4
- Like IA32

Subroutine Call and Return

- Push address of next instruction onto stack
- Start executing instructions at Dest
- Like IA32

- Pop value from stack
- Use as address for next instruction
- Like IA32

Miscellaneous Instructions

Don't do anything

- Stop executing instructions
- IA32 has comparable instruction, but can't execute it in user mode
- We will use it to stop the simulator
- Encoding ensures that program hitting memory initialized to zero will halt

Status Conditions

Mnemonic	Code
AOK	1

Normal operation

Mnemonic	Code
HLT	2

Halt instruction encountered

Mnemonic	Code
ADR	3

Bad address (either instruction or data) encountered

Mnemonic	Code
INS	4

Invalid instruction encountered

Desired Behavior

- If AOK, keep going
- Otherwise, stop program execution

Y86 Code Generation Example #2

Second Try

■ Write with pointer code

```
/* Find number of elements in
   null-terminated list */
int len2(int a[])
{
   int len = 0;
   while (*a++)
       len++;
   return len;
}
```

Result

Don't need to do indexed addressing

■ Compile with gcc34 -01 -S

Y86 Code Generation Example #3

IA32 Code

Setup

```
len2:
   pushl %ebp
   movl %esp, %ebp

movl 8(%ebp), %edx
   movl $0, %ecx
   movl (%edx), %eax
   addl $4, %edx
   testl %eax, %eax
   je .L13
```

Y86 Code

Setup

```
pushl %ebp  # Save %ebp
rrmovl %esp, %ebp # New FP
pushl %esi  # Save
irmovl $4, %esi  # Constant 4
pushl %edi  # Save
irmovl $1, %edi  # Constant 1
mrmovl $(%ebp), %edx  # Get a
irmovl $0, %ecx  # len = 0
mrmovl (%edx), %eax  # Get *a
addl %esi, %edx  # a++
andl %eax, %eax  # Test *a
je Done  # If zero, goto Done
```

- Need constants 1 & 4
- Store in callee-save registers
- Use and1 to test register

Y86 Code Generation Example #4

IA32 Code

Loop & Exit

```
.L11:
  incl %ecx
  movl (%edx), %eax
  addl $4, %edx
  test1 %eax, %eax
  jne .L11
.L13:
  movl %ecx, %eax
  leave
  ret
```

Y86 Code

Loop & Exit

```
Loop:
  addl %edi, %ecx # len++
  mrmovl (%edx), %eax # Get *a
  addl %esi, %edx # a++
  andl %eax, %eax # Test *a
  jne Loop # If !0, goto Loop
Done:
  rrmovl %ecx, %eax # return len
  popl %edi  # Restore %edi
  popl %esi  # Restore %esi
  rrmovl %ebp, %esp # Restore SP
  popl %ebp # Restore FP
  ret
```

Summary

Y86 Instruction Set Architecture

- Similar state and instructions as IA32
- Simpler encodings
- Somewhere between CISC and RISC

How Important is ISA Design?

- Less now than before
 - With enough hardware, can make almost anything go fast
- Intel has evolved from IA32 to x86-64
 - Uses 64-bit words (including addresses)
 - Adopted some features found in RISC
 - » More registers (16)
 - » Less reliance on stack

- 36 - CS:APP2e