
Randal E. Bryant
adapted by Jason Fritts

CS:APP2e

CS:APP Chapter 4
Computer Architecture

Instruction Set
Architecture

CS:APP Chapter 4
Computer Architecture

Instruction Set
Architecture

http://csapp.cs.cmu.edu

– 2 – CS:APP2e

Hardware Architecture - using Y86 ISAHardware Architecture - using Y86 ISA

For learning aspects of hardware architecture desig n,
we’ll be using the Y86 ISA
� x86 is a CISC language

� too complex for educational purposes

Y86 Instruction Set Architecture
� a pseudo-language based on x86 (IA-32)

� similar state, but simpler set of instructions

� simpler instruction formats and addressing modes

� more RISC-like ISA than IA-32

Format
� 1–6 bytes of information read from memory

� can determine instruction length from first byte

– 3 – CS:APP2e

CISC Instruction SetsCISC Instruction Sets
� Complex Instruction Set Computer

� Dominant style through mid-80’s

Stack-oriented instruction set
� Use stack to pass arguments, save program counter

� Explicit push and pop instructions

Arithmetic instructions can access memory
� addl %eax, 12(%ebx,%ecx,4)

� requires memory read and write
� Complex address calculation

Condition codes
� Set as side effect of arithmetic and logical instru ctions

Philosophy
� Add instructions to perform “typical” programming t asks

– 4 – CS:APP2e

RISC Instruction SetsRISC Instruction Sets
� Reduced Instruction Set Computer

� Internal project at IBM, later popularized by Henne ssy
(Stanford) and Patterson (Berkeley)

Fewer, simpler instructions
� Might take more to get given task done

� Can execute them with small and fast hardware

Register-oriented instruction set
� Many more (typically 32) registers

� Use for arguments, return pointer, temporaries

Only load and store instructions can access memory
� Similar to Y86 mrmovl and rmmovl

No Condition codes
� Test instructions return 0/1 in register

– 5 – CS:APP2e

Y86 Instruction Set and FormattingY86 Instruction Set and Formatting
Byte 0 1 2 3 4 5

pushl rA A 0 rA F

jXX Dest 7 fn Dest

popl rA B 0 rA F

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 F rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

– 6 – CS:APP2e

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

ZF SF OF

Y86 Processor StateY86 Processor State

� Program Registers
� Same 8 as with IA32. Each 32 bits

� Condition Codes
� Single-bit flags set by arithmetic or logical instr uctions

» ZF: Zero SF:Negative OF: Overflow

� Program Counter
� Indicates address of next instruction

� Program Status
� Indicates either normal operation or some error con dition

� Memory
� Byte-addressable storage array
� Words stored in little-endian byte order

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

– 7 – CS:APP2e

Y86 Instruction Set #2Y86 Instruction Set #2
Byte 0 1 2 3 4 5

pushl rA A 0 rA F

jXX Dest 7 fn Dest

popl rA B 0 rA F

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 F rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0 addl 6 0

subl 6 1

andl 6 2

xorl 6 3

– 8 – CS:APP2e

Y86 Instruction Set #3Y86 Instruction Set #3
Byte 0 1 2 3 4 5

pushl rA A 0 rA F

jXX Dest 7 fn Dest

popl rA B 0 rA F

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 F rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

– 10 – CS:APP2e

Encoding RegistersEncoding Registers
Each register has 4-bit ID

� Same encoding as in IA32

Register ID 15 (0xF) indicates “no register”
� Will use this in our hardware design in multiple pl aces

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

0
1
2
3

6
7
4
5

– 11 – CS:APP2e

Instruction ExampleInstruction Example
Addition Instruction

� Add value in register rA to that in register rB
� Store result in register rB
� Note that Y86 only allows addition to be applied to register data

� Set condition codes based on result
� e.g., addl %eax,%esi Encoding: 60 06

� Two-byte encoding
� First indicates instruction type
� Second gives source and destination registers

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

– 12 – CS:APP2e

Arithmetic and Logical OperationsArithmetic and Logical Operations

� Refer to generically as
“ OPl ”

� Encodings differ only by
“function code”
� Low-order 4 bytes in first

instruction word

� Set condition codes as
side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

– 13 – CS:APP2e

Move OperationsMove Operations

� Like the IA32 movl instruction

� Simpler format for memory addresses

� Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB Register --> Register

Immediate --> Register
irmovl V, rB 3 0 F rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

– 14 – CS:APP2e

Move Instruction ExamplesMove Instruction Examples

irmovl $0xabcd, %edx movl $0xabcd, %edx 30 f2 cd ab 00 00

IA32 Y86 Encoding

rrmovl %esp, %ebx movl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

– 16 – CS:APP2e

Jump InstructionsJump Instructions

� Refer to generically as
“ jXX ”

� Encodings differ only by
“function code”

� Based on values of
condition codes

� Same as IA32 counterparts

� Encode full destination
address
� Unlike PC-relative

addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

– 18 – CS:APP2e

Stack OperationsStack Operations

� Decrement %esp by 4

� Store word from rA to memory at %esp

� Like IA32

� Read word from memory at %esp

� Save in rA
� Increment %esp by 4

� Like IA32

pushl rA A 0 rA F

popl rA B 0 rA F

– 19 – CS:APP2e

Subroutine Call and ReturnSubroutine Call and Return

� Push address of next instruction onto stack

� Start executing instructions at Dest

� Like IA32

� Pop value from stack

� Use as address for next instruction

� Like IA32

call Dest 8 0 Dest

ret 9 0

– 20 – CS:APP2e

Miscellaneous InstructionsMiscellaneous Instructions

� Don’t do anything

� Stop executing instructions

� IA32 has comparable instruction, but can’t execute it in
user mode

� We will use it to stop the simulator

� Encoding ensures that program hitting memory
initialized to zero will halt

nop 1 0

halt 0 0

– 21 – CS:APP2e

Status ConditionsStatus Conditions

Mnemonic Code

ADR 3

Mnemonic Code

INS 4

Mnemonic Code

HLT 2

Mnemonic Code

AOK 1

� Normal operation

� Halt instruction encountered

� Bad address (either instruction or data)
encountered

� Invalid instruction encountered

Desired Behavior
� If AOK, keep going

� Otherwise, stop program execution

– 24 – CS:APP2e

Y86 Code Generation Example #2Y86 Code Generation Example #2
Second Try

� Write with pointer code

� Compile with gcc34 –O1 -S

Result
� Don’t need to do indexed

addressing

/* Find number of elements in
null-terminated list */

int len2(int a[])
{

int len = 0;
while (*a++)

len++;
return len;

}

.L11:
incl %ecx
movl (%edx), %eax
addl $4, %edx
testl %eax, %eax
jne .L11

– 25 – CS:APP2e

Y86 Code Generation Example #3Y86 Code Generation Example #3
IA32 Code

� Setup

Y86 Code
� Setup

len2:
pushl %ebp
movl %esp, %ebp

movl 8(%ebp), %edx
movl $0, %ecx
movl (%edx), %eax
addl $4, %edx
testl %eax, %eax
je .L13

len2:
pushl %ebp # Save %ebp
rrmovl %esp, %ebp # New FP
pushl %esi # Save
irmovl $4, %esi # Constant 4
pushl %edi # Save
irmovl $1, %edi # Constant 1
mrmovl 8(%ebp), %edx # Get a
irmovl $0, %ecx # len = 0
mrmovl (%edx), %eax # Get *a
addl %esi, %edx # a++
andl %eax, %eax # Test *a
je Done # If zero, goto Done

� Need constants 1 & 4

� Store in callee-save registers

� Use andl to test register

– 26 – CS:APP2e

Y86 Code Generation Example #4Y86 Code Generation Example #4
IA32 Code

� Loop & Exit

Y86 Code
� Loop & Exit

.L11:
incl %ecx
movl (%edx), %eax
addl $4, %edx
testl %eax, %eax
jne .L11

.L13:
movl %ecx, %eax

leave

ret

Loop:
addl %edi, %ecx # len++
mrmovl (%edx), %eax # Get *a
addl %esi, %edx # a++
andl %eax, %eax # Test *a
jne Loop # If !0, goto Loop

Done:
rrmovl %ecx, %eax # return len
popl %edi # Restore %edi
popl %esi # Restore %esi
rrmovl %ebp, %esp # Restore SP
popl %ebp # Restore FP
ret

– 36 – CS:APP2e

SummarySummary

Y86 Instruction Set Architecture
� Similar state and instructions as IA32

� Simpler encodings

� Somewhere between CISC and RISC

How Important is ISA Design?
� Less now than before

� With enough hardware, can make almost anything go f ast

� Intel has evolved from IA32 to x86-64
� Uses 64-bit words (including addresses)
� Adopted some features found in RISC

» More registers (16)
» Less reliance on stack

