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Abstract—In this paper, we present two new methods for efficient
rate control and entropy coding in lossy image compression using
JPEG-2000. These two methods enable significant improvements
in computation complexity and power consumption over the tra-
ditional JPEG-2000 algorithms. First, we propose a greedy heap-
based rate-control algorithm (GHRaC), which achieves efficient
postcompression rate control by implementing a greedy marginal
analysis method using the heap sort algorithm. Second, we pro-
pose an integrated rate-control and entropy-coding (IREC) algo-
rithm that reduces the computation complexity of entropy coding
by selectively entropy coding only the image data that is likely to
be included in the final bitstream, as opposed to entropy coding all
image data. Together, these two methods enable significant savings
in computation time and power consumption. For example, the
GHRaC method demonstrates 16 speedup for rate control when
encoding the Lena color image using a target compression ratio
of 128:1, one quality layer, and code blocks of 32 32 pixels. The
IREC method expands upon GHRaC to perform entropy coding in
conjunction with rate control. Using an enhanced version of IREC,
these two methods jointly achieve a speedup in execution time of
14 over traditional rate control and entropy coding, which first
entropy codes all image coefficients and then separately performs
postcompression rate control using the generalized Lagrange mul-
tiplier method to select which data are included in the final bit-
stream. Both theoretical analysis and empirical results are pre-
sented in validating the advantages of the proposed methods.

Index Terms—Integrated rate control and entropy coding
(IREC), JPEG-2000, rate-distortion (R-D) optimization.

I. MOTIVATION AND INTRODUCTION

JPEG-2000 is the latest international standard for still image
compression [1]. It has been shown to be superior in many

aspects to the existing standards [2]: JPEG, MPEG-4 Visual
Texture Coding, JPEG-LS, and Portable Network Graphics
(PNG). Besides providing state-of-the-art image compression,
it offers a number of features to address the requirements of
emerging applications, such as progressive compression and
transmission, region of interest coding (ROC), and robustness
to bit errors, among others [3]. These features are of importance
to many high-end and emerging applications, including the
Internet, remote sensing, and mobile computing.

Although JPEG-2000 has many advantages over other image
coding standards, the high computation complexity currently
prevents its practical use in many applications, especially
applications with real-time or low-power constraints. In this
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paper, we address the computation complexity issue of some
core components of JPEG-2000. In particular, we present
two new methods for faster rate control and entropy coding.
First, we propose the greedy heap-based rate-control (GHRaC)
algorithm,1 which is an efficient postcompression rate-control
algorithm that implements a greedy marginal analysis method
[4] using the heap sort algorithm [5]. Compared with the
widely used generalized Lagrange multiplier method [6], the
proposed scheme offers an order of magnitude speedup for
typical lossy compression. For example, when compressing the
Lena color image using a target compression ratio of 64:1, one
quality layer, and code blocks of 32 32 pixels, the GHRaC
method achieved a speedup of nearly 14 over the generalized
Lagrange multiplier method for postcompression rate control.
Overall, when encoding with compression ratios of 64:1 and
one quality layer, speedups with rate control of 10 to 18
were obtained for code blocks of 32 32 pixels, and speedups
of 4 to 9 were achieved with code blocks of 64 64
pixels. Even greater speedups can be achieved with higher
compression ratios or multiple progressive quality layers.

However, improving the speed of only postcompression rate
control does not greatly reduce the overall execution time for
lossy compression, since the rate-control procedure typically ac-
counts for only a moderate fraction of the overall execution time.
To achieve more significant execution time speedups, we also
target the entropy-coding procedure, which in JPEG-2000 has
been found to dominate execution time and power consumption
[7]. With the exception of lossless or very high-quality compres-
sion (i.e., very high bit rates), a large fraction of the data gen-
erated from entropy coding is never used in the final bitstream,
resulting in an enormous waste of computing resources. To ad-
dress this inefficiency, we propose the integrated rate-control
and entropy-coding (IREC) scheme to jointly reduce the com-
putation complexity of rate-control and entropy-coding proce-
dures. The IREC scheme tries to perform entropy coding for
only those parts of the image data that are likely to be included
in the final bitstream, based on the target compression ratio and
characteristics of the image. We propose two versions of IREC.
The initial version, called the IREC local-K scheme, reduces
the cost of entropy coding by only entropy coding the next three
unselected coding passes in each code block. The second ver-
sion, called the enhanced IREC local-K, incorporates coefficient
weighting models to further reduce the number of unselected
coding passes that need to be entropy coded over all code blocks.

Compared with schemes that perform rate control and en-
tropy coding separately, the IREC method can dramatically re-
duce the overall computation complexity with a negligible loss
in performance. Empirical results demonstrate the efficacy of
the IREC method. For example, when encoding the Lena color

1GHRaC is pronounced like “grace,” and IREC is pronounced like “Iraq.”
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Fig. 1. Structure of the JPEG-2000 encoder.

image with a target compression ratio of 128:1, one quality
layer, and code blocks of 32 32 pixels, the enhanced IREC
local-3 method achieved over 14 speedup over separate rate
control and entropy coding. Overall, speedups in entropy coding
and rate control of 2 to 3.5 were achieved with the base
IREC local- scheme (with ), and speedups of 5
to 9 were achieved with the E-IREC local- scheme (with

) when encoding with compression ratios of 64:1, one
quality layer, and code blocks of 32 32 pixels.

The remainder of this paper is organized as follows. Sec-
tion II gives a general introduction to JPEG-2000 and the current
postcompression rate-control methods. Section III presents the
GHRaC optimization, which applies the heap sort to a greedy
rate-control algorithm to achieve significant speedups in rate
control. Section IV presents the IREC scheme to jointly per-
form rate control and entropy coding. Section V presents the
experimental results, demonstrating the efficacy of the two new
optimizations. Finally, Sections VI concludes this paper.

II. RATE CONTROL IN JPEG-2000

A. Introduction to JPEG-2000

JPEG-2000 is a wavelet-based image compression standard
that employs the Embedded Block Coding with Optimized
Truncation (EBCOT) algorithm for entropy coding and rate
control [8]–[10]. The general encoding structure is illustrated
in Fig. 1. Following RGB to YCrCb color space conversion, the
wavelet transform is applied to transform each color component
into a hierarchy of subbands using the dyadic decomposition
attributed to Mallat [11]. As illustrated in Fig. 2, in the trans-
form domain, each component is represented as a collection of
resolution levels, and each level contains three subbands, with
the exception of the coarsest resolution level , which has
only one subband. Each subband is then quantized and coded
separately. To provide flexibility and error resilience, each
subband is often further partitioned into relatively small code
blocks (usually 32 32 or 64 64 samples per code block),
and entropy coding is independently performed on each code
block.

The fundamental method of entropy coding in JPEG-2000 is
based on the MQ coder, which is essentially a bit-plane coder
employing classical context-adaptive arithmetic coding to effi-
ciently represent a collection of binary symbols [12]. Starting
from the most significant bitplane in a code block, three passes
are made over each bitplane in each code block. These passes
are referred to as coding passes.2 Each coding pass provides a

2Hereafter, we will use pass to denote the coding procedure and coding pass
to denote the embedded bitstream generated by each pass.

variable quality contribution to the reconstructed image. After
all of the coding passes have been generated, a postcompression

Fig. 2. Wavelet decomposition of an image.

rate-control procedure is applied to determine which coding
passes should be included in the final bitstream according to
some user-specified optimization criteria.

Bit rate and quality are the two primary optimization cri-
teria for rate control. When the user specifies a desired bit rate
(i.e., degree of compression), rate-distortion (R-D) optimiza-
tion is performed to maximize the quality (minimize the dis-
tortion) for a target bit rate. Conversely, when the user speci-
fies a desired quality, R-D optimization is performed to min-
imize the bit rate for the target quality. The JPEG-2000 post-
compression rate-control procedure provides two optimization
modes for these two criteria. In this paper, we focus on the first
mode, where the user specifies the target bit rate, and rate dis-
tortion minimizes distortion for the specified bit rate. However,
rate control for the second criteria, quality, is a complementary
problem, and we shall briefly discuss in Sections III and IV how
the GHRaC and IREC methods can be readily adapted to this
mode, respectively.

B. R-D Optimization in JPEG-2000

Now let us introduce the R-D optimization problem in JPEG-
2000. Let denote the th code block and denote the th
coding pass of code block . Each code block contains at
most coding passes,3 labeled to . In lossy compres-
sion, the full set of coding passes in each code block is truncated
to reduce the bit rate for that code block, so let denote the
number of coding passes selected from to be included in the

3In the EBCOT coding scheme, the number of coding passes N is 3b � 2,
where b is the number of bits/bitplanes for elements of code block B .
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final bitstream. In this paper, is referred to as a truncation
point for code block , which means that coding passes to

following the truncation point in code block are
not included in the final bitstream. Assuming an additive distor-
tion metric and defining as the distortion associated with
truncation point of code block , then the total distortion

from including only the first coding passes of each code
block in the final bitstream (versus selecting all coding
passes) can be calculated as

(1)

Additionally, for each code block , let denote the set of
indices for the sequence of subband samples in that code block.
Let denote the sequence of subband samples associated
with truncation point (i.e., including only the first coding
passes of ), and let denote the full set of subband sam-
ples, in which no sample is truncated. Then, the distortion
for code block may be modeled by the following equation,
as indicated by Taubman [10]:

(2)

This measures distortion contributed by code block due to
the data loss from truncating the bitstream at point . is
the coefficient weight of code block , which is determined by
the location and characteristics of and the human perceptual
models being used, as indicated in [12].

To determine the bit rate, let be the total number of bits
in the first coding passes of code block . The total bit rate
corresponding to the set of truncation points, , across all
code blocks in the image, then becomes

(3)

Now the rate-distortion optimization problem for the first
rate-distortion optimization mode, in which the user specifies
the target bit rate, can be formulated as

(4)

Effectively, this optimization problem is the problem of finding
the optimal set of truncation points that minimizes the
overall distortion under the specified rate constraint. Likewise,
the second R-D optimization mode, minimizing the overall bit
rate for a target quality, can be formulated as

(5)

As indicated earlier, we mainly focus on the first R-D opti-
mization mode, but later we will briefly discuss how the second
problem can be easily solved using the same method.

A variety of techniques have been proposed for solving the
discrete R-D optimization problem. Some of these methods pro-
vide the optimal solution, while other methods only provide
an approximation to the optimal solution. There are currently
three popular approaches to this problem: dynamic program-
ming [13], which provides an optimal solution, the general-
ized Lagrange multiplier (LM) method [6], and greedy marginal
analysis [4], [14], of which the latter two only approximate the
solution.

1) Dynamic Programming: Dynamic programming is most
commonly employed when the optimal solution is desired for
R-D optimization. When using dynamic programming, the al-
gorithm starts by creating a tree that represents all possible so-
lutions, such as that illustrated in [13]. Each stage of the tree
corresponds to a code block , and each node of the tree at a
given stage represents a possible cumulative rate usage. Each
branch has as a distortion cost corresponding to that particular
truncation point, and therefore, as we traverse the tree from the
root to the leaves, we can compute the accumulated distortion
for each of the solutions. During this procedure, Bellman’s prin-
ciple can be applied to optimally prune the tree [15]. While the
tree pruning can be used efficiently in some situations, like the
widely used Viterbi algorithm, in many situations the number of
nodes in the tree increases exponentially. This is typically the
case when dynamic programming is used to solve the R-D opti-
mization problem in JPEG-2000. Thus, while it guarantees op-
timality, in reality, dynamic programming is generally imprac-
tical for R-D optimization due to its prohibitively high compu-
tational complexity.

2) Generalized LM: The LM method has also been widely
used to solve the constrained optimization problem. If the distor-
tion function is differentiable, the set of truncation points
can be found by minimizing the cost function [10]

(6)

where is the LM. However, since the truncation point set is
discrete, the optimal solution is not always easy to find.

To help resolve the problem of computing the LM for a dis-
crete set of points, Everett [6] proposed the generalized LM
method. The object of this method is to find the optimal LM

that generates the least distortion under the given rate con-
straint. For each , there is a rate constraint based upon the
target bit rate. Given this rate constraint, there is a corresponding
set of truncation points that minimizes this cost function.
By sweeping over its range, the generalized LM method can
find a that satisfies such that no other ex-
ists for which . If ,
then the corresponding truncation point set is optimal. If

, the solution is not guaranteed to be optimal,
but it is still a good approximation.

A second problem of the LM method with respect to JPEG-
2000 is that only those coding passes whose R-D ratios fall on
the convex hull of the R-D curve can be selected as potential
truncation points [6]. Since truncation points in a code block
do not always reside on the convex hull of the R-D curve, this
means that the generalized LM method cannot always give an
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optimal solution to the R-D problem in JPEG-2000. Fortunately,
if the set of points residing on the convex hull is sufficiently
dense, as is typically the case in JPEG-2000 [12], the general-
ized LM method can provide a good approximation to the op-
timal solution with much lower computational complexity than
dynamic programming methods. In JPEG-2000, the fractional
bitplane coding style gives a finely embedded bitstream such
that the truncation points residing on the convex hull of the R-D
curve are usually sufficiently dense to give a good approxima-
tion to the optimal solution. With this characteristic, the R-D op-
timization problem for JPEG-2000 is commonly solved through
a two-step process. First, convex hull analysis is used to de-
termine which coding passes reside on the convex hull of the
rate-distortion curve. Then the generalized LM method is ap-
plied to approximate the optimal solution [10], [12].

We shall now explicitly define the convex hull with respect
to R-D optimization in JPEG-2000. First, we start with the R-D
curve for a code block, which is defined by the set of R-D ratios
(i.e., R-D slopes) between each pair of truncation points in the
code block. Let us define the R-D ratio (slope) between
a pair of truncation points and in the code block as

(7)

Given this R-D curve, we shall define the set of feasible trunca-
tion points for a code block to be the set of all truncation points
residing on the convex hull of the R-D curve for that code block.
Then, the necessary and sufficient condition that a truncation
point of code block is “feasible” becomes [12]

(8)

(9)

Inequality (8) indicates that it is not possible to select an earlier
truncation point in code block with a lower R-D ratio (slope),
and inequality (9) says that, if is a feasible truncation point,
then all of the R-D ratios (slopes) between and the truncation
points before it must be larger than all of the R-D ratios (slopes)
between and the truncation points after it.

An efficient convex hull analysis algorithm to find the set of
feasible truncation points for each layer has been presented in
[12], and the computation complexity has an upper bound of
two times the number of coding passes (i.e., truncation points).
In this paper, we define a coding segment as the set of coding
passes between two consecutive feasible truncation points in a
code block.4

After determining the set of feasible truncation points for
each code block, the generalized LM method can be applied to
approximate the optimal solution. As mentioned earlier and dis-
cussed in detail in [6], the set of optimal truncation points among
all feasible truncation points can be found by sweeping the LM

across its full range. However, since is real-valued and its

4In this paper, the terms coding segment and feasible truncation point will be
used interchangeably, since a feasible truncation point effectively denotes the
coding segment immediately preceding it.

range can be partitioned infinitely, in theory, the number of it-
erations needed to find the optimal solution can become quite
large. Consequently, in practice, most implementations of the
LM method stop the search once either: 1) the result lies within
a specified bound or 2) the maximum number of iterations has
been reached.

To reduce the time complexity of the generalized LM method,
a bi-section search can be applied to find a suitable given rate
constraint . To determine the time complexity of the gen-
eralized LM method using the bi-section search, let be the
number of code blocks, let be the average number of fea-
sible truncation points (segments) per code block, and let be
the maximum number of search iterations before the bi-section
search stops. Then, the time complexity of the generalized LM
method using the bi-section search is , which in-
cludes the cost of finding the set of feasible truncation points for
each code block in the bi-section search.

In many scenarios, a quality scalable bitstream is desirable.
Such is the case when a compressed image is sent to many
users, with varying bandwidth constraints. Using quality scal-
able compression, only one bitstream needs to be generated,
which can then be sent to all users with progressive quality.
Quality-scalable compression denotes that the final bitstream
contains multiple quality layers, with each representing an ef-
ficient compression of the original image at progressively lower
distortions. Another advantage of a quality-scalable bitstream
is that it facilitates unequal error protection, which is an im-
portant technique in achieving good image transmission over
error-prone channels [16], [17]. When generating quality-scal-
able bitstreams, the computation complexity of the generalized
LM method increases linearly with the number of quality layers.
Assuming that the generalized LM method is being used to gen-
erate a quality-scalable bitstream with quality layers, then the
LM search must be applied times, once for each quality layer.
As a result, the time complexity of the generalized LM method
for generating multiple quality layers becomes .
Since computation complexity is now linearly dependent upon
both the number of search iterations and the number of quality
layers, it therefore becomes desirable to either limit the number
of quality layers or further limit the number of search iterations
used in each quality layer.

3) Greedy Marginal Analysis Algorithm: From the pre-
vious discussion, it is apparent that significant computation
complexity is required for the generalized LM method in per-
forming the many search iterations needed to find the Lagrange
multiplier that minimizes the distortion for the given rate
constraint. Furthermore, this drawback becomes increasingly
significant for many quality layers since the computation
complexity increases linearly with the number of layers. An
alternate, more efficient approach is to use a greedy algorithm
for coding pass selection.

A good greedy algorithm for R-D optimization is Fox’s mar-
ginal analysis Algorithm 1. The basic idea is to allocate the
available bits step by step in such a way that in each step the in-
cremental gain per bit is maximized. Based on this application of
Fox’s greedy algorithm, we propose the following algorithm for
R-D optimization in JPEG-2000, as presented in Algorithm 1.
When used to select the set of coding passes for a given target
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bit rate, this greedy algorithm limits the combination of coding
passes that may be included in the final bitstream. When the
compression ratio is relatively high, only a small number of all
of the coding passes can be included in the final bitstream. Based
on this observation and the fact that, after convex hull analysis,
the R-D ratios of the coding segments in each code block are
strictly decreasing, the proposed greedy method can be applied
to find the coding segments (and correspondingly, the coding
passes) to be included.

Algorithm 1: Greedy Algorithm for Rate Control

1: ;

2: while do

3: Find an unselected feasible truncation point with the
maximum rate-distortion ratio among all code
blocks and select it;

4: ;

5: end while

From Algorithm 1, we can see that the computation com-
plexity of this algorithm depends on how efficiently each iter-
ation is able to find the next feasible truncation point to be in-
cluded in the final bitstream. This requires searching through
all code blocks for the remaining coding segment with the
greatest R-D ratio (i.e., the remaining coding segment that will
generate the most distortion per bit, if not included in the final
bitstream).

A straightforward implementation of this greedy algorithm,
however, does not yield impressive results. Assuming that the
total number of feasible truncation points (segments) to be se-
lected is , where , then the overall time
complexity is . For example, let us assume a gray-scale
image with a resolution of 512 512, 4 levels of wavelet decom-
position, a code block size of 32 32 (which therefore contains

code blocks), and an average of coding seg-
ments per code block. For a target compression ratio of
and only quality layer, the number of coding passes to
be included is approximately . Assuming that
the number of search iterations for the generalized LM method
is , then the complexity of the generalized LM algo-
rithm is about , while the complexity of
the greedy algorithm is about . Therefore, if not
implemented in an efficient way, the greedy algorithm may be
worse than the generalized LM method in time complexity, es-
pecially when the compression ratio is relatively low. To address
this inefficiency, we present an optimized version of this greedy
algorithm in Section III.

III. GHRAC

Here, we present an efficient implementation of the greedy
marginal analysis algorithm using the heap data structure and its
associated functions, which enables us to quickly find the next
feasible truncation point to be included in the final bitstream in
each iteration of Algorithm 1. Next, we first provide a brief in-
troduction to the heap data structure. More detailed descriptions

Fig. 3. d-heap data structure.

of the heap and associated theory are presented by Cormen et al.
[5].

A heap is a multielement data structure which may be dually
referenced as both a tree and an array. The flexibility of the heap
data structure makes it ideal for implementing sorting or priority
queues. The most basic heap structure is the binary heap, which
is similar to a binary tree in that each nonleaf node has up to
two child nodes. The more general heap implementation is the

-ary heap (where ). The organization of the -heap is
such that nodes are numbered in breadth-first order, and each
tree node in the heap (except for leaf nodes and the bottom-
rightmost parent node) has child nodes. As a consequence of
this organization, the heap can be indexed as either an array
or a tree, since the parent and child nodes of any node in the
tree/array can be easily determined. Given the index for any
tree node (or array element), the index of its parent node and its
th child node can be computed as follows:

PARENT (10)

CHILD (11)

It is readily apparent that the depth of a -heap with nodes is
. An example -ary heap with is illustrated in

Fig. 3.
The other key feature of the heap is that an ordered heap sat-

isfies the heap property. The heap property states that the value
of the key of a node is no greater than the value of its parent’s
key, which is mathematically stated as

PARENT (12)

The two major functions for use with the heap data structure
are makeheap and siftdown. The makeheap function takes as
input a completely unordered array and sorts all of the items
so that the resulting order obeys the heap property. The sift-
down function is similar, but assumes that only the root node
of the heap is unordered, i.e., all child subheaps are ordered to
satisfy the heap property. Consequently, the siftdown function
checks whether the key of the root node is greater than or equal
to all of its child nodes’ keys. If not, it exchanges nodes with
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the child node having the largest key and then recursively re-
peats the process with that child subheap, until the entire heap
satisfies the heap property.

For our proposed rate-control algorithm GHRaC, we use the
heap data structure to implement a priority queue for selecting
the set of coding segments to be included in the final bitstream.
In this implementation of a heap-based priority queue, each
node in the heap corresponds to one of the available code
blocks, and each node has as its key the R-D ratio of the first
unselected coding segment (i.e., the first unselected feasible
truncation point) in that code block. The heap organization
of the nodes (code blocks) allows the indices for parent and
child nodes to be calculated directly as discussed above, elimi-
nating the need for pointers. The algorithmic description of the
GHRaC rate-control procedure is presented in Algorithm 2.

Algorithm 2: GHRaC Algorithm Under Rate Constraint

1: procedure GHRaC-rate (set , int , set )

2: int ; heap ;

3: ;

4: ;

5: while do

6: while do

7: ;

8: update(root );

9: siftdown(root , key(root ), );

10: end while

11: ;

12: end while

The GHRaC algorithm first initializes the -heap tree by or-
dering the nodes in the heap using the makeheap func-
tion, based on the R-D ratios of the first coding segment of each
code block . After initialization, the heap is ordered such that
the root node has the largest key, and the key of each node is no
larger than the key of its parent. Meanwhile, all of the feasible
truncation points are marked as unselected. The rate func-
tion returns the rate for the first unselected coding segment of
code block . The update function marks the first unse-
lected coding segment of to indicate that it will be included in
the th layer and then updates the key of code block to be the
R-D ratio of the next unselected coding segment in that block.
The siftdown function updates the -heap tree to conserve the
heap property.

The time complexity of the makeheap operation is ,
and the time complexity of siftdown is , where is
the total number of code blocks [5]. The time complexity of the
update is . From the algorithm, we see that makeheap and
siftdown are performed once for each coding segment, so the
overall time complexity becomes , where

denotes the total number coding segments to be included
in the final bitstream. For a fixed target compression ratio, the
time complexity is independent of the number of quality layers
to be generated, unlike the generalized LM method, whose time
complexity increases linearly with the number of layers. The
only extra storage/memory needed by the GHRaC algorithm is
the heap data structure, where the number of nodes in the heap
data structure is equal to the total number of code blocks. Since
the total number of code blocks is usually not large (e.g., for a
1024 1024 grayscale image with a block size of 64 64, the
total number of blocks is 256), and each entry only requires a
few bytes so the extra storage/memory consumption is small.

Comparing this implementation with the original imple-
mentation of the greedy algorithm (which uses a brute-force
sequential search in each iteration) whose complexity is

, it is evident that the GHRaC implementation may be
up to times faster. For example, when encoding
an image using a four-level wavelet decomposition with one
component of size 512 512, a code block size of 32 32 (i.e.,
there are code blocks), and using a binary heap (i.e.,

), then a speedup of up to 16 can be achieved.
Now, let us return to the example from Section II-B3 to

compare the computation complexity of the GHRaC algorithm,
which has complexity , with the gener-
alized LM method, which has complexity .
Assuming code blocks, an average of coding
segments per code block, search iterations for the gen-
eralized LM method, a compression ratio of ,

quality layers, and a binary heap data structure,
then the generalized LM method still requires about 32005
comparison operations in order to find all of the coding passes
to be included in the final bitstream. Conversely, the number of
comparison operations needed by the GHRaC algorithm is now
only about 6656, giving approximately a 5 speedup. Since
the computation complexity of the GHRaC algorithm does
not depend on , when increasing from to ,
the number of comparisons for the GHRaC scheme remains
unchanged because does not change. Conversely, the
number of operations for the generalized LM method increases
linearly with to become 32005, so the GHRaC algorithm
provides significant gain. As will be shown in Section V-A,
experimental performance results are given for the two methods
across a variety of images and parameterizations, confirming
this theoretical analysis.

As mentioned earlier, the GHRaC scheme can also be
easily modified to solve the second rate-distortion optimization
problem, which is the problem of minimizing the bit rate under
a specified quality (or distortion) constraint. Assuming the spec-
ified quality constrains the distortion to for each layer ,
where , then all that we need to change
in Algorithm 2 is to replace with , replace
with , replace with , and replace

with .
Here, denotes the total distortion when no coding passes
are selected, and denotes the distortion reduction
by moving the truncation point of code block to the next
feasible one. The modified scheme, illustrated in Algorithm 3,
has the same computation complexity as Algorithm 2.
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Algorithm 3: GHRaC Algorithm Under Quality Constraint

1: procedure GHRaC-quality (set , int , set )

2: int ; heap ;

3: ;

4: ;

5: while do

6: while do

7: ;

8: update(root , );

9: siftdown(root , key(root ), );

10: end while

11: ;

12: end while

IV. INTEGRATED RATE CONTROL AND ENTROPY CODING

One key characteristic of most current implementations of
JPEG-2000 is that rate allocation, which selects the coding seg-
ments to be included in the final bitstream, is not performed
until all of the coding passes have been generated. While this
implementation is effective for those situations that demand ei-
ther very high image quality or many quality layers (some of
which are very high quality), this is generally not the case for
most users when performing image compression.

Conversely, it is much more common that image compres-
sion is performed to generate a bitstream targeting a specified
bit rate or quality level. Since entropy coding is the most compu-
tationally intensive and power-intensive routine in JPEG-2000
encoding, and execution time and power consumption increase
roughly linearly with the number of coding passes to be gen-
erated, it is very inefficient to first generate all of the coding
passes and then select which coding passes should be included
in the final bitstream, when the majority of the coding passes
will not be used. This is especially true when the number of
coding passes to be included in the final bitstream is only a small
fraction of the total number of coding passes. All of the unse-
lected coding passes are thrown away, so a significant amount
of work is wasted in performing entropy coding on these passes.

A. Overview of Selective Entropy Coding

To avoid wasted effort, selective entropy coding should be
applied, that is, if a coding pass is predicted to have no chance
of being included in the final bitstream, then entropy coding
should not be performed on it. To perform partial entropy
coding, two types of methods can be used. The first one is
referred to as model-based methods, which determine which
coding passes are to be generated based on the target bit rate
and some predetermined coefficient weighting models, such
as the weighting factors for coefficients in different subbands
and/or the weighting factors for bits in different bitplanes.

Masuzaki et al. [18] proposed one example of a model-based
method, which provided an adaptive rate-control scheme for
JPEG-2000 such that subbands are ordered in the final bitstream
based on their significance. By predicting the adequate number
of coding passes and updates adaptively, their scheme is able to
reduce both computational cost and working memory size for
bitstream buffering. Another example of a model-based method
is to specify the quantization level for each subband such that,
after quantization, bitplanes with all zero coefficients do not
need to be coded [1], [10], [12]. Although such approaches
can give good results in some situations, they have the draw-
back that no general model exists to precisely model all image
types. For example, after being wavelet-transformed, the ba-
boon image has substantial information in the high-resolution
subbands, whereas Lena contains little information in these sub-
bands. As a result, when using model-based methods to pre-
determine the set of coding passes on which to perform en-
tropy coding, the quantization step sizes should be conservative
enough to work for all images.

Alternatively, the second, and more versatile type of selec-
tive entropy coding, is content-adaptive entropy coding. Given
a target bit rate, the generation of the coding passes depends not
only on the weighting factors, but also on the characteristics of
the image content. Compared with the model-based methods,
content-adaptive methods can more precisely model each in-
dividual image. The drawback of content-adaptive methods is
that, while they provide good approximations to the optimal so-
lution, they typically entail much greater computational com-
plexity for calculating the image characteristics and deciding
which passes should be entropy coded.

B. Base IREC Algorithm

In this paper, we propose the IREC algorithm for selective
entropy coding, which combines the accuracy of content-adap-
tive entropy coding with the efficiency of the GHRaC rate-con-
trol algorithm (which was presented in Section III). In this joint
method, only those coding passes that have a good chance of
being included in the final bitstream are entropy coded. There-
fore, all other coding passes are not entropy coded, resulting in
dramatic reductions in execution time and power consumption
with negligible performance loss in most situations. The IREC
scheme can be further improved by incorporating the model-
based approaches, as will be discussed later in this section.

Operating in conjunction with the GHRaC rate-control
method, the basis of the IREC selective entropy-coding algo-
rithm is that only one coding segment needs to be available
for each code block at any point in time. Since the GHRaC
method only uses as the key for each node the R-D ratio of
the next unselected feasible truncation point (coding segment),
and the value of that key is in no way dependent upon any
other coding segments in that code block, then it is sufficient
that only the next coding segment be available for the GHRaC
method in order for it to generate its result. Consequently, it is
only necessary that entropy coding be performed on the next
unselected coding segment in each code block.

However, as described earlier in Section II-B, the precise de-
termination of coding segments is based on convex-hull analysis
of the R-D ratios of coding passes in a coding block. The coding
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TABLE I
STATISTICS OF THE NUMBER OF CODING PASSES BETWEEN TWO CONSECUTIVE

FEASIBLE TRUNCATION POINTS

passes that do not reside on the convex hull of the R-D curve are
incorporated into the next coding segment. Consequently, for
a coding segment containing coding passes, coding
passes must be generated via entropy coding. Since the number

of coding passes in the next segment is not known before
passes are generated, the coding passes in a code block

must be adaptively entropy coded until the requisite passes
have been generated. An alternate, more deterministic method is
to conservatively estimate the number of coding passes required
in the next coding segment. This is the approach we take for the
IREC method.

According to the statistical information presented in Table I,
we can see that coding segments require only 1.4 coding passes
on average. Furthermore, the vast majority of coding segments
(over 95%) contain no more than two coding passes, and very
few (less than 0.25%) contain more than four coding passes. In
fact, this small number of coding passes per coding segment
is characteristic of most images and is the foundation of the
convex-hull approach to rate control commonly used by the gen-
eralized LM method, as well as our GHRaC method, as dis-
cussed in Section II-B. Likewise, this characteristic shows up
in model-based entropy-coding methods that assign different
weights to different bitplanes; for example, when using mean
square error (MSE) as the quality criterion, the ratio between
the bits in two consecutive bitplanes is about 4. We can likewise
use this characteristic in the design of our IREC method.

Based on the characteristic average number of coding passes
per coding segment, the IREC method estimates the R-D ra-
tios for the next unselected coding segmented using only the
next coding passes. In effect, the IREC computes a R-D ratio
for the next unselected feasible truncation point, but it does so
only using the next unselected coding passes. The remaining
coding passes in the code block are not generated, and so cannot
be used to measure the ratio. Consequently, when coding
passes are generated, the R-D ratio can be computed exactly if
the coding segment contains or fewer coding passes,5 but, if it
contains coding passes, then the calculated ratio will only
be an estimate of the exact ratio. Fortunately, as shown below,
this estimate is typically quite accurate, and inaccuracies have
little impact on compression performance.

In other words, the IREC scheme only entropy codes the next
unselected coding passes in each code block. Then rate con-

trol performs convex-hull analysis and coding segment selec-

5Note that, while a coding segment of size K will give the exact R-D ratio,
the codec will not know that it is the exact value since theK +1th coding pass
is not available.

tion on only those coding passes, in effect only using local
information to find the set of local feasible truncation points.
Based on the fact that each coding segment includes only a
small number of coding passes, we expect that, if is suf-
ficiently large to cover most cases, in most situations, the set
of local feasible truncation points will be nearly equivalent to
the set of global feasible truncation points. By using only the
set of local feasible truncation points, the number of coding
passes that need to be generated can be reduced dramatically,
and the IREC scheme provides an effective mechanism for ac-
complishing this.

The algorithmic description of the IREC scheme is presented
in Algorithm 4. The IREC method operates in conjunction with
the GHRaC method, so the makeheap, siftdown, and update
functions are effectively the same as those in Algorithm 2. The
entropyencoder function generates the next coding
passes for code block . The convexhull function per-
forms the convex hull analysis on these unselected coding
passes to find the set of local feasible truncation points for
each code block . Notice that, as increases, the set of local
feasible truncation points more accurately represents the set
of global feasible truncation points. Consequently, the size
of provides a tradeoff between the execution time and the
effectiveness of coding segment selection.

Algorithm 4: Integrated Rate Control and Entropy Coding

1: procedure IREC(set , int , set )

2: int ; heap ; segment ; cblk ; int ;

3: ;

4: for(each ) do

5: entropyencoder ;

6: convexhull ;

7: end for

8: ;

9: ;

10: while do

11: while do

12: first unmarked local feasible truncation point
of root ;

13: ;

14: number of coding passes in ;

15: entropyencoder( );

16: convexhull(root );

17: update(root ;

18: siftdown(root , key(root ), );

19: end while

20:

21: end while
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We refer to the IREC scheme that generates only the next
coding passes as the IREC local- scheme. Conversely, we

refer to the original method, which first entropy codes all coding
passes before doing any rate control, as the global scheme. Ex-
amining the IREC local- scheme, we can see that the number
of extra coding passes that have been generated but not yet se-
lected is at most , where is the total number of code
blocks. So if the total number of coding passes to be included in
the final bitstream is , then the total number of coding passes
that are entropy coded is . In contrast, the global
scheme entropy codes all coding passes in all code blocks
before doing rate control, for a total of coding passes en-
tropy-coded. Consequently, the speedup in entropy coding for
the IREC method can be up to , where
is the total number of coding passes in a code block in average
and is computed as for bitplanes.6

For example, assuming , or 10% of the coding
passes are included in the final bitstream, then the IREC local-
scheme with enables a speedup of approximately
over the global scheme.

The overall computation complexity of the IREC method
is the sum of the computation complexities of the GHRaC
rate control, which is , and the entropy
coding in IREC. We saw above that the number of coding
passes that are entropy coded is . If we let
denote the average computation needed to entropy code each
coding pass, then the computation complexity of entropy
coding in IREC is . Therefore, the overall
computation complexity of the IREC local- scheme is
upper-bounded by .
In practical applications, the contribution from entropy coding

dominates the computation complexity.
Similar to the GHRaC rate-allocation algorithm, the IREC al-

gorithm can likewise be easily modified to solve the second R-D
optimization problem, minimizing the bit rate under a specified
quality constraint. The necessary modifications are straightfor-
ward, and the resulting computation complexity is the same.

C. Enhanced IREC Scheme With a Coefficient Weighting
Model

While the IREC scheme is effectively a content-adaptive en-
tropy-coding method, it can be further enhanced by incorpo-
rating coefficient weighting models. Specifically, for a particular
set of wavelet filters, the corresponding coefficient weighting
factors can be used to predict which coding passes among the
many subbands and color components have a greater chance of
being included in the final bitstream. We therefore propose using
these coefficient weighting factors to further reduce the number
of coding passes that must be entropy coded prior to rate con-
trol. In particular, we use the coefficient weighting factors, in
conjunction with charateristics of the most significant bitplane
of each code block, to estimate the R-D ratios of coding passes
before entropy coding, and perform rate control based on these
estimates. We shall refer to this the improved IREC scheme

6For example, if postquantization coefficients are represented using 8 b, then
the total number of coding passes is P = 22.

that combines coefficient weighting models as E-IREC, the en-
hanced IREC local- , scheme.

In the E-IREC local- scheme, before the heap data struc-
ture is initialized, the upper bound on the R-D ratio of the first
coding segment in each code block is estimated without gener-
ating any coding passes. The R-D estimate is based on both its
coefficient weighting factor and some characteristic statistics of
the code block, such as the number of 1’s in the most signifi-
cant non-zero bitplane. The heap is then initialized using only
the upper bound estimates of the R-D ratios for the code blocks.
The benefit of this approach is that many of the code blocks with
small estimates will never need to be entropy coded.

Similar to the IREC scheme, the E-IREC local- scheme
also iteratively selects coding passes to be included in the final
bitstream. However, while the key of the root node in the orig-
inal IREC scheme was always the R-D ratio computed for the
first unselected coding segment, the key may now be an estimate
of the R-D ratio of the first unselected coding segment. At the
beginning of each iteration, if the key of the root node (the node
with the maximum R-D ratio) is an estimated upper bound on
the R-D ratio, which means that no actual coding passes have
been generated for this code block, then E-IREC entropy codes
the first coding passes of the code block, and finds the first
local feasible truncation point for it. Then E-IREC updates the
key of this node with the actual R-D rate and adjusts the heap
based on the updated information to preserve the heap proper-
ties. E-IREC then terminates this iteration and begins the next
iteration. Note that no coding passes were selected for inclusion
in the final bitstream in this iteration.

When E-IREC begins an iteration in which the key of the root
node an actual R-D ratio, then E-IREC works exactly the same
way as the original IREC scheme. First, the associated unse-
lected coding segment is included in the final bitstream. Then,
additional coding passes are entropy coded such that the total
number of unselected coding passes equals . Then, a local fea-
sible truncation point is found for the code block, and the key
of this node is updated to the R-D ratio of this next unselected
feasible truncation point. Finally, the heap is adjusted based on
the updated information to preserve the heap properties, and an-
other iteration begins.

The advantage of E-IREC’s approach over IREC is that many
of the code blocks will never need any entropy coding. Whereas
IREC requires that at least coding passes be entropy coded
for each code block, E-IREC only requires that the root node
of the -heap contain entropy-coded coding passes. Other
nodes in the heap can be merely estimates. Of course, as the
heap is updated after each iteration, many of the code blocks
will eventually become root nodes and have at least coding
passes entropy-coded. Conversely, many of the code blocks with
small R-D estimates may never become the root node and will
not require any entropy coding. The E-IREC method achieves
a considerable speedup over the IREC method by not entropy
coding these code blocks with small R-D estimates.

When analyzing the computation complexity of E-IREC, re-
call that, for the IREC local- scheme, in addition to the coding
passes included in the final bitstream, IREC entropy codes an
additional coding passes for each of the code blocks.
Thus, the total number of coding passes that are entropy-coded
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TABLE II
DESCRIPTION OF TEST IMAGES

is , where is the total number of coding passes in-
cluded n the final bitstream. Conversely, for the E-IREC local-
scheme, if a code block contributes nothing to the final bit-
stream, then there is a high probability that no coding passes
will be generated for this code block. Consequently, only
code blocks will have an extra coding passes entropy-coded
for them, where . We expect will often be much less
than , and such was found in the experimental results, pre-
sented in Section V. However, the upper bound on the number
of coding passes that E-IREC may generate is still the same as
IREC, . Consequently, the overall computation com-
plexity for E-IREC, including the computation complexity of
GHRaC, is still the same as IREC,

, though the heuristic approach of E-IREC will gen-
erally enable significant speedup for E-IREC over IREC. Exper-
imental results for both the IREC local schemes and E-IREC
local- schemes are presented in Section V and are contrasted
with the global scheme.

V. EXPERIMENTAL RESULTS AND COMPARISON

Here, we present the experimental results and performance
comparisons. The test images used in the experiments are de-
scribed in Table II. Jasper [19], which is a reference JPEG-2000
codec implementation is used as the test platform. The exper-
imental parameters include the Daubechies floating point
wavelet filter [8] with four levels of wavelet decomposition. The
code block size is 32 32, so each color component includes
256 code blocks. The irreversible wavelet filter is used. Before
performing entropy coding, the default quantization in Jasper is
conducted to reduce the number of coding passes that need to be
generated for the global scheme. The maximum number of iter-
ations for the bi-section search in the generalize LM rate-con-
trol method is set to . In packetization stage, the LRCP
progression order is used in the experiments. The experiments
were performed on an IBM Thinkpad with a 1.13-GHz Pentium
III CPU and 256-M RAM running Redhat Linux with kernel
version 2.4.16.

Since Jasper is not optimized for execution, to make the com-
parison fair and independent of specific implementations, the
post compression rate-control procedure in Jasper has been sep-
arately rewritten and optimized, and the generalized LM method
has been implemented in a more efficient way. For the inte-
grated rate control and entropy coding, we use the entropy-
coding speedup as the performance criterion, which is defined
as the ratio of the total number of coding passes generated by
the global scheme over the number of coding passes generated
by the proposed scheme. With a reasonable assumption that the
execution time and power consumption are proportional to the

number of coding passes, this criteria can precisely exhibits the
execution speedup independent of a specific implementation.

A. Performance of the GHRaC Rate-Control Algorithm

This section compares the performance of the GHRaC rate-
control scheme to the generalized Lagrange multiplier method.
The performance is compared for two situations, varying com-
pression ratios for a single quality layer, and varying numbers
of quality layers for a fixed compression ratio, respectively.

Before presenting the experimental results, one issue needs to
be addressed. When generating the final bitstream, some header
information must be included in addition to the coding passes,
such as the main header and packet headers [1]. The number of
bits needed by the main header can be readily obtained. Con-
versely, the number of bits needed for packet headers in each
layer is more difficult to determine. One way to do this is to first
select the coding passes, then test how many bytes are needed
for the packet headers, as been done in some reference codecs
[19]. However, this method is not particularly efficient at de-
termining the size of packet headers since packet header length
estimation takes quite some time. In this paper, we use a more
efficient method to estimate the length of packet headers. We se-
lect coding passes until their accumulated rate is within a given
distance of the desired final bit rate (in the following experi-
ments, we use 90% of the desired rate for this layer), then esti-
mate the length of the packet headers by simulating the header
generation procedure, and using this value as the packet header
length. Although this method may cause some small variations
in bit rate (usually several bytes), the complexity is much lower
since we only need to estimate packet header length one time for
each layer. In the following experiments, we apply this packet
header length estimation scheme for both the GHRaC algorithm
and the generalized LM method.

The speedup of the proposed GHRaC scheme over the gener-
alized LM algorithm is illustrated in Figs. 4 and 5. The speedup
is defined as the ratio of the execution time for the generalized
LM algorithm over the execution time for the GHRaC method.
Figs. 4(a) and 5(a) present the experimental results at different
compression ratios, when the number of layers is fixed to one,
and Figs. 4(b) and 5(b) present the experimental results for dif-
ferent numbers of layers when the total compression ratio is
fixed to 8:1.

As expected, in all of these experiments, the proposed
GHRaC scheme always outperforms the generalized LM
method, especially when the compression ratio is high or there
is a large number of quality layers. Notice also that a speedup
is achieved even with only one quality layer and minimal
compression. The results show that even in such conservative
cases at least 2 speedup is achieved. As predicted by the
formal analysis, speedup increases proportional to both the
number of quality layers and the log of the compression ratio.
Comparing Figs. 4 and 5, we can also see that the speedup in
the case of code block size 32 32 is higher than in the case
of code block size 64 64. The reason is that the number of
generated code blocks with code block size 32 32 is much
higher than the number of generated code blocks with code
block size 64 64, which provides more optimization space
for the proposed GHRaC rate-control scheme. However, the
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Fig. 4. Execution speedup of the GHRaC procedure over generalized LM method, code block size: 32� 32.

Fig. 5. Execution speedup of the GHRaC procedure over generalized LM method, code block size: 64� 64.

tradeoff is that the working memory required in the case of
code block size 32 32 is 4 times of the working memory
required in the case of code block size 64 64.

Compression efficiency experiments have also been per-
formed. In most situations, the proposed GHRaC rate-control
scheme gives the same results as the LM method, and, in
some situations, due to the imprecise header length estimation,
the results may vary by several bytes. However, when such
variation occurs, comparison of the disparate bitstreams shows
that the one of the bitstreams is likely a superset of the other.
In other words, bitstreams generated separately by the GHRaC
method and the LM method will mostly contain the same set
of coding segments, but the order of the segments may vary
a little, with one of the bitstreams containing a separate or
extra coding segment or two towards the end of the bitstream.
Such variation in the bitstreams happens primarily when the
methods encounter equivalent R-D ratios in different coding
segments in the image; while one method will select one of
the equivalent coding segments, the other method may select
the other segment. Coding selection through the remainder of
the image may then result in further disparity in the order or
selection of coding segments, since the two methods will have

different sets of possible coding segments available following
this decision.

In addition to execution speed, memory requirements is also
an important factor. In the proposed GHRaC scheme, the only
extra memory requirement is the space to store the heap data
structure. Since there are only ( is the number of gener-
ated code blocks) elements in the heap data structure, the extra
memory requirement is no more than bytes, which is neg-
ligible compared with the image size.

B. Performance of the IREC Schemes

Here we present the experimental results of the proposed
IREC schemes as well as the modified version. Both coding
efficiency and entropy-coding speedup are presented. In Fig. 6,
the experimental results for the four test images are presented,
with the top graph illustrating the PSNR results and the bottom
graph showing the entropy-coding speedups between the global
scheme, the IREC local-2 scheme, IREC local-3 scheme, and
IREC local-4 scheme. In these experiments, the code block size
is set to be 32 32. In examining the results for PSNR, we can
see that using as few as coding passes for the IREC
local- gives very good coding segment selection, while using
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Fig. 6. Experimental results for the proposed IREC schemes.

Fig. 7. Experimental results for the E-IREC local-3 scheme.

coding passes provides results that are nearly always
equivalent to the global scheme. In terms of speedup, we can
see that the speed of entropy coding improves with decreasing

and with increasing compression ratio. For the particular
case of coding passes, it is evident that an average
speedup of 3 can be achieved with negligible loss in PSNR.

However, as we discussed in Section IV, the number of
coding passes that need to be generated can be further reduced
by incorporating the coefficient weighting models. Experiments
for the E-IREC local- scheme have also been conducted and
are presented in Fig. 7. In the experiments, the upper bound
for the R-D ratio of each code block was estimated by: 1)
counting the number of 1’s in the first two most significant
nonzero bitplanes of that code block, and calculating the dis-
tortion reduction for including these two bitplanes in the final
bitstream; 2) estimating the total number of compressed bits in
the two bitplanes by dividing the total number of bits in these
two bitplanes by a constant, called the maximum compression
ratio; and 3) generating a final estimate on the upper bound
of the R-D ratio by dividing the distortion reduction with the

number of compressed bits in these bitplanes. The maximum
compression ratio is set to be 100. Fig. 7 shows that the PSNR
results using the E-IREC local-3 scheme are the same as those
from using the IREC local–3 scheme. These results are as
expected, since the maximum compression ratio is sufficiently
large. However, in comparing the speedup results, it can be seen
that the E-IREC scheme enables much greater speedups than
the IREC scheme, especially when at high compression rates.

VI. CONCLUSION

In this paper, we have addressed two core components in
JPEG-2000, rate-control and entropy-coding procedures, and
proposed two novel methods to reduce the computation com-
plexity. First, we have proposed GHRaC, an efficient postcom-
pression rate-control scheme by combining the greedy algo-
rithm with the heap sort. GHRaC can speed up the postcom-
pression rate-control procedure dramatically, especially when
the compression ratio is high, or multiple quality layers are
generated. Based on the proposed GHRaC rate-control scheme,
some statistical information, the existing weighting model, and
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the fact that the entropy coding is the most time and power
consuming part, we have proposed IREC to reduce the com-
putation complexity of entropy-coding procedure. The IREC
scheme can reduce the unnecessary operations during the en-
tropy-coding procedure and consequently speed up the overall
system performance. Both theoretical analysis and experimental
results show that the proposed scheme can dramatically speed
up the execution and reduce the computation complexity of the
entropy-coding procedure, which consequently reduces the the
execution time and power consumption.
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