Breaking the Memory Bottleneck with an Optical Data Path

Jason Fritts

Assistant Professor Department of Computer Science Co-Author: Roger Chamberlain

Overview

- **Memory Bottleneck**
- **Optical Technology**

 - VCSELsOptical Links
- **Evaluation Environment**
- **Optical Bus Simulation**

 - Optical Bus with Current Technology
 Optical Bus in Future Processors
 Optical Bus with Additional Prefetching
- Conclusions and Future Work

Memory Bottleneck

- Growing Processor-Memory Gap
 Longer Memory Latencies

 - Lower Memory Bandwidths
 - Memory Latency is Major Bottleneck
 - Memory Bandwidth is next Major Bottleneck
 - Doug Burger (1997)
 - examined processor and memory performance over a 2 decade period
 - found bandwidth is now becoming a critical bottleneck
- **Existing Solutions**

 - Primarily Focus on Memory Latency Aggressive Latency Hiding Techniques

 - lockup-free caches data speculation cache-conscious load scheduling
 - hardware and software prefetching

Memory Bandwidth is next Major Bottleneck

3

Optical Technology

- Traditionally used in long-haul communications
 - very high bandwidth
 - low latency
 - moderate cost
- Beginning to use in short-distance communications
 - multiprocessor networks (R. Chamberlain and M. Franklin)
- VCSELs Now can take fiber directly to chip!

Optical Processor-Memory Bus

- Feasibility
 - VCSEL current < 1mA => Low Power!
 - Initial esimations indicate power likely much lower than existing electrical buses
 - Metal-Semiconductor-Metal (MSM) technology for photodectors fairly mature
 - Area for laser driver/receiver < ½ area for electrical pad and drive circuitry
 - Simple, effective fiber alignment methods have been demonstrated
- Very High Bandwidth
 - Orders of magnitude greater than traditional electrical buses
 - 16x16 arrays of VCSELs possible
 - 32 x 32 arrays available soon
 - Each VCSEL supports > 1 Gb/s rates
 - Can achieve at least 256 Gb/s
 - 1 Tb/s will be available soon
- Comparable transmission latency

5

Optical Bus Links

- Rigid free-space optical links
 - Intra-board communications

- Fiber image guide optical links
 - Intra-board communications, and
 - Board-to-board communications

Evaluation Environment

IMPACT Compilation/Simulation **Environment**

- Aggressive ILP research compiler
- **Architecture-independent evaluation**
 - Large, generic instruction set
 - Retargetable back-end
- Cycle-accurate trace-driven simulation

 Models variety of architectures:
 - - in-order superscalar
 - out-of-order superscalar VLIW
 - Highly parameterizable
 - Supports sample/skip simulation
 - 400,000 instructions per sample

$$max_skip_size = \max \left[\left[\frac{\min(1x10^9, trace_size)}{50} - sample_size \right] 0 \right]$$

Benchmark

- Benchmark of Image/Video Decompression Algorithms
 - Large volumes of data
 - Few computations per memory element
 - More likely to be memory bound
 - MPEG-4 and image/video decoding apps from MediaBench

[CLee97] "MediaBench: A Tool for Evaluating and Synthesizing Multimedia Communication Systems," MICRO-30, 1997.

10

Benchmark Characteristics

Program	# Dynamic Instrs	Skip Size	% Program Simulated	Simulation Time (min)	Simulation Time (max)
djpeg	3 M	0	100	0.43 min	0.48 min
h263dec	60M	1.5M	23.6	1.10 min	1.66 min
mpeg2dec	95M	2.5M	14.8	2.64 min	3.00 min
mpeg4dec	1400M	9.6M	4	6.20 min	9.14 min
unepic	5 M	0	100	1.25 min	2.92 min

Program	# Static Instrs	Input-1		Input-2	
		File Size	# Dynamic	File Size	# Dynamic
djpeg	19,397	5756	3 M	31,074	25 M
h263dec	8721	20,364	60M	19,338	65M
mpeg2dec	9520	34,906	95M	1,593,409	720M
mpeg4dec	108,273	39,213	1400M	503,060	500M
unepic	3767	7432	5 M	10,129	5 M

11

Base Architecture Model

Architecture model

- 4-issue media processor
- 1 GHz processor frequency
 pipeline: 1 fetch, 2 decode, 1 write back, variable execute stages
 64-bit processor-memory bus

L1 Cache

- 16 KB direct-mapped L1 instruction `cache w/ 256 byte lines
- 32 KB direct-mapped L1 data cache w/ 64 byte lines

On-Chip L2 Cache

256 KB 4-way set associate w/ 64 byte lines

- External Memory

 80 ms memory access and controller time

 64 ms memory transfer time

50 cycles L2 15 cycles (D-cache) 20 cycles (I-cache) L1 Instr Cache 3 cycles

Optical Processor-Memory Bus Evaluation

13

Optical Bus with Current Technology

- Memory Access Time: $T_{L2_miss} = T_A + \frac{T_T}{X_B}$
- Optical bus virtually eliminates memory transfer time

Optical Bus in Future Processors

• Memory Access Time:

$$T_{L2_miss} = X_L * \left(T_A + \frac{T_T}{X_B} \right)$$

- Improvement consistent across all benchmarks
 - varied by degree of memory use
- Up to 3.3x improvement
 - mpeg4decunenic

15

Optical Bus in Future Processors

- Average reduction memory CPI is 50%
- However, close examination shows smaller reduction in L2 miss at higher latency factors (51%, 45%, 42%, 38%)

Optical Bus with Additional Prefetching (see paper)

17

Conclusions

- Optical processor-memory bus is feasible
- Optical bus virtually eliminates memory transfer time
- Optical bus is increasingly effective at higher memory latencies
- Benchmarks were not memory-bound, but on memory-bound applications, performance will be much more dramatic
- Significant opportunities for optical buses
 - More aggressive latency hiding
 - Coalescing multiple buses
 - Multi-hop optical buses