Instruction Fetch Characteristics of Media Processing

Jason Fritts
Assistant Professor
Department of Computer Science
Co-Author: Wayne Wolf

Overview

- Architectures for Media Processing
- Workload-Dependent Characteristics
 - branch characteristics
 - instruction memory characteristics
 - loop characteristics
- Architecture-Dependent Characteristics
 - fetch architectures
 - dynamic branch prediction
 - pre-execution pipeline length
- Conclusions
Programmable Architectures for Media Processing

- General-purpose processors (GPPs) w/ multimedia extensions
 - good programmability at little added cost
 - some speedup with subword parallelism
 - optimized for general-purpose processing

- High-performance DSPs (aka Media Processors)
 - good performance
 - specialized hardware
 - subword parallelism
 - ILP
 - good programmability (w/ special programming libraries)
 - moderate frequency

- GPPs and DSPs continually evolving towards media processing
 - computing workloads becoming increasingly dominated by media applications

Media Processing vs. General-Purpose Processing

- General-purpose processing:
 - streaming instructions
 - static data

- Media processing:
 - streaming data
 - static instructions
Workload-Dependent Characteristics

Evaluation Environment

- **MediaBench benchmarks**
 - Developed at UCLA
 - Augmented w/ MPEG-4 and H.263
 - Variety of media applications, including video, audio, graphics, image, security, and speech

- **IMPACT compilation & simulation environment**
 - Aggressive ILP research compiler
 - Cycle-accurate simulation
 - Large, generic RISC instruction set
 - Three levels of optimizations
 - Classical
 - Superscalar
 - Hyperblock
 - classical optimizations only
 - adds loop unrolling and superblock formation (speculation)
 - adds hyperblock optimization (predication)
Static Branch Prediction

- 5.5 dynamic operations per basic block
 - similar to general-purpose applications
- 89.5% prediction rate on training input
- 85.9% prediction rate on evaluation input

Instruction Working Set Size

- Cache Regression
 - cache sizes: 1K to 4MB
 - assumed line size of 64 bytes
 - 8 KB working set size
Instruction Spatial Locality

- **Cache Regression**
 - line sizes: 8 to 1024 bytes
 - assumed cache size of 64 KB
 - 84.8% spatial locality (up to 256 bytes)

\[
\text{spatial locality} = \frac{(A - B)}{A}
\]

Looping Characteristics

- **Highly Loop Centric**
 - nearly 95% of execution time spent within two innermost loop levels
Iterations per Loop

- Large Number of Iterations
 - average of 10 iterations per loop
 - significant processing regularity

Architecture-Dependent Characteristics
Base Architecture Model

- **Architecture model**
 - 8-issue media processor
 - operation latencies targeting 800 MHz to 1.2 GHz
 - 64 integer and floating-point registers

- **L1 Cache**
 - 16 KB direct-mapped L1 instruction cache w/ 256 byte lines
 - 32 KB direct-mapped L1 data cache w/ 64 byte lines

- **On-Chip L2 Cache**
 - 256 KB 4-way set associate w/ 64 byte lines

- **External Memory**
 - 6:1 Processor to bus frequency ratio

Aggressive vs. Conservative Fetch

- **Aggressive Fetch**
 - decoupled fetch-execute pipeline
 - 12-entry instruction buffer

- **Conservative Fetch**
 - lock-step pipeline
History-Based Dynamic Branch Prediction

- PAs(k,p)
 - k - # of history bits
 - p - # of history tables

- Good performance with small predictors
 - 128-256 entries
 - 4-8 history bits
 - 1 history table

Performance vs. Size for Dynamic Branch Predictors

- Comparison of four 1 Kb dynamic branch predictors
 - k - # of history bits
 - p - # of history tables

 \[\text{size}_{\text{PAs}(k, p)} = bk + 2^{k+1} p \]

- Minor variation between 1 Kb predictors
 - large predictors only provide 2-3% better performance
Conclusions

- Instruction fetch characteristics of Media Processing are **Idealistic**

- **Workload-Dependent Characteristics**
 - 5.5 operations per basic block
 - 85-90% static branch prediction
 - 8 KB working set size
 - 84.8% spatial locality (up to 256 bytes)
 - 95% of execution in 2 innermost loops
 - 10+ iterations per loop

- **Architecture-Dependent Characteristics**
 - Aggressive fetch provides little benefit
 - Small dynamic branch predictors sufficient
 - 1K predictors reduce miss rate by 2x
 - 2% performance reduction for each extra pre-execution pipeline stage