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Overview

● Why Programmable Media Processors?

● Evaluation Environment

● Cache Memory Hierarchy Evaluation
— preliminary investigation of memory hierarchy for media processing

● Conclusions

● Future Research



2


�����
��

�

Multimedia Applications

● Wide range of applications
— Communication

– video conferencing
– World Wide Web
– digital/video libraries
– videophones

— Entertainment
– video/computer games
– movies
– animation

— Computer Vision
– image understanding
– surveillance
– tracking

— Education
– interactive learning
– virtual classrooms

— Art and Architecture

Multimedia is 
primarily a 

communication media

Multimedia is 
primarily a 

communication media
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Future of Multimedia

Multimedia is 
moving towards 

advanced 
representations

Multimedia is 
moving towards 

advanced 
representations

Multimedia industry evolves with 
processor performance.

Multimedia industry evolves with 
processor performance.
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Multimedia Processing Solutions

● Application-specific processors
— high performance at low cost
— very limited flexibility

● Multimedia extensions to general-purpose processors
— good programmability at little added cost
— some speedup for SIMD parallelism

● Current “ programmable”  media processors
— good performance

– specialized hardware
– subword parallelism
– ILP

— good programmability  (w/ special programming libraries)
— moderate frequency

�

Expectations for
Future Media Processors

● Greater Throughput

● Larger On-Chip Memory Hierarchies

● Increased Architecture Regularity

Storage
     - large on-chip memory
     - large register file
     - efficient memory I/O

Programmability
     - high connectivity
     - regular arrangement
     - optimizing compiler

Throughput
     - fast clock speed
     - high parallelism
     - high utilization

Balance
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Evaluation Environment
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MediaBench Benchmark Suite

● Developed at UCLA

[CLee97]   “MediaBench:  A Tool for Evaluating and Synthesizing Multimedia 
Communication Systems,”  MICRO-30, 1997.

● Excellent combination of applications
— video: MPEG-2
— audio: ADPCM coder
— graphics: Mesa
— image: JPEG, EPIC, Ghostscript
— security: PGP, Pegwit
— speech: GSM, G.721, Rasta

● Augmented for greater representation of future multimedia
— MPEG-4 object-oriented video
— H.263 very-low bitrate video
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IMPACT Environment

● Aggressive ILP research compiler
— Three levels of optimizations

– Classical - classical optimizations only
– Superscalar - adds loop unrolling and superblock formation
– Hyperblock - adds hyperblock optimization

● Architecture-independent evaluation
— large, generic instruction set
— retargetable back-end

● Performance analysis tools
— profiling
— simulation for superscalar and VLIW architectures

&('

Cache Memory Hierarchy
Evaluation
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Architecture Evaluation

● Variety of Memory Hierarchy Options
— Cache vs. Memory
— Automatic Prefetching vs. Software Prefetching
— Streaming Memory vs. DMA Prefetching
— Organization of hierarchy?

● Related Work

[CLee97]  “MediaBench:  A Tool for Evaluating and Synthesizing Multimedia 
Communications Systems,” MICRO-30, 1997.

[ZWu97] “Study of Cache Systems in Video Signal Processors,” SiPS-98, 1998.
[DZucker97]  “Architecture and Arithmetic for Multimedia Enhanced Processors,” Ph.D. 

Thesis, Dept. of Electrical Engineering, Stanford Univ., 1997.
[DZucker95]  “A comparison of hardware prefetching techniques for multimedia 

benchmarks,”  Technical Report CSL-TR-95-683, Stanford University, 1995.
[YChen98] “Multimedia Signal Processors:  An Architectural Platform with Algorithmic 

Compilation,” Journal of VLSI Signal Processing Systems for Signal, Image, and 
Video Technology, vol. 20, 1998.

[FCatthoor98] “Custom Memory Management Methodology:  Exploration of Memory 
Organisation for Embedded Multimedia System Design,” Kluwer Academic 
Publishers, 1998.
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Base Architecture Model

● Architecture model
— 8-issue VLIW media processor
— operation latencies targeting 500 MHz to 1 GHz processor frequency
— 64 integer and floating-point registers
— pipeline:  1 fetch, 2 decode, 1 write back, variable execute stages

● L1 Cache
— 16 KB direct-mapped L1 instruction cache w/ 256 byte lines
— 32 KB direct-mapped L1 data cache w/ 64 byte lines

– non-blocking w/ 8-entry miss buffer
– no-write allocate w/ 8-entry write buffer

— currently no streaming memory support

● On-Chip L2 Cache
— 256 KB 4-way set associate w/ 64 byte lines

– non-blocking w/ 8-entry miss buffer
– write allocate w/ 8-entry write buffer

● External Memory
— 4:1 Processor to external bus frequency ratio
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L1 Cache

● Results from earlier workload evaluation:
— i-cache working set size: < 8 KB
— i-cache spatial locality: 84.8% locality within 256 bytes
— d-cache working set size: < 32 KB
— d-cache spatial locality: 60.8% locality within 128 bytes

[JFritts99]  “Understanding multimedia application characteristics for designing 
programmable media processors,” SPIE Photonics West, Media Processors 
’99, 1999.

● No streaming memory support
— to be evaluated in future work

9(:

L2 Cache Evaluation

● Cache size
— regression over cache sizes from 128 KB to 1 MB
— base cache size is 256 KB
— 0.5% avg. performance increase from doubling cache size

– ~7% difference for unepic and mpeg4dec

● Access latency
— regression over access latencies of 8, 15, 30, 60 cycles
— base access latency is 15 cycles
— 5.6% avg. performance decrease from doubling access latency

– ~35% difference for pegwitdec and pegwitenc (large working set size)
– ~16% difference for mpeg2dec

— attributable to increasing memory access latency
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L2 Cache
Line Size Evaluation

● Line size
— regression over line sizes from 32 to 512 bytes
— base line size is 64 bytes
— 10% avg. performance decrease from doubling line size

– 1.5-3.5% degradation for speech and security media
– 32-37% degradation for image, audio, and graphics

— degradation attributable to increased latency for longer lines
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External Memory
Latency Evaluation

● Latency
— regression over memory latencies from 25 to 400 bus cycles
— base line size is 50 bytes
— 20% avg. performance decrease from doubling memory latency

– minimal degradation for speech and security media
– 59-77% degradation for image, audio, and graphics
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External Memory
Bandwidth Evaluation

● Bandwidth
— regression over system bus width of 4 to 32 bytes
— base system bus width is 8 bytes
— 6% avg. performance increase from doubling system bus width

– 0.6 - 2.7% increase for speech, security, and encoding benchmarks
– 7.5 - 13.9% increase for decoding and graphics benchmarks
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Correlation Between External Memory 
Latency and Bandwidth Experiments

● Latency Experiment
— increasing memory latency decreases memory bandwidth

● Bandwidth Experiment
— increasing memory bandwidth decreases transfer latency

● Simultaneously Evaluate Latency and Bandwidth
— consider only high bandwidth benchmarks

Program Avg. Latency
Degradation (%)

Avg. Bandwidth 
Degradation (%) 

Bandwidth
(L, M, H)

cjpeg 68.1 11.3 M
gs 66.8 15.4 M

gsmencode 3.6 0.4 L
H263dec 99.1 30.8 H
mipmap 75.6 13.1 H

mpeg2enc 25.3 2.8 L
mpeg4dec 95.3 27.8 H
pegwitdec 25.1 3.0 L
rawdaudio 108.1 22.3 H

texgen 53.3 6.1 M
unepic 88.1 21.5 H
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Conclusions

● L2 cache has little impact on performance
— useful for storing state during context switches

● External memory latency => primary memory problem
— Streaming data structures will help alleviate this

● External memory bandwidth => secondary problem

Y/Z

Future Work

● Multi-Level Prefetch Hierarchy
— automatic prefetching structures primarily researched at L1-level
— desire automatic prefetching without saturating bandwidth
— possible solution:

– conservative prefetch unit on-chip
– aggressive prefetch unit off-chip

● Streaming Data Out
— automated prefetching techniques primarily support streaming data IN
— examine characteristics of streaming data out
— modify streaming memory structures to support both input and output
— example:

– write buffers already similar to streaming memory buffers for output data
– modify to predict output stride and fetch (allocate) memory lines as appropriate


