A Hierarchical Image Segmentation Algorithm

Wei Yu, Fangting Sun,
and Jason Fritts
Drawbacks of Existing Segmentation Methods

• May not preserve spatial relationships

• Potentially high computational complexity

• Segmentation primarily uses color intensity

• Single condition for when to stop segmentation
Key Aspects of New Hierarchical Segmentation Method

- Preserve spatial relationships
 - use hierarchical segmentation

- Low computational complexity
 - force a specified amount of segmentation at each level of hierarchy

- Segmentation primarily uses color intensity
 - perform wavelet analysis on each $K \times K$ block of pixels
 ($K = 4$ or 8 typically)
 - provides info on orientation, texture, and energy

- Single condition for when to stop segmentation
 - provide three user-controllable stopping conditions
Target Markets

- Content Based Image Retrieval (CBIR)
- Object-based video compression
 - e.g. MPEG-4
- Pattern recognition
- Moving object tracking
Implementation

- Separate M x N image into a set of non-overlapping blobs
 - each blob contains $K \times K$ pixels
 - blobs are usually small, e.g. 4 x 4 or 8 x 8 pixels
- Perform wavelet on each blob
 - provides orientation, texture, and energy info in addition to color intensity
- Initialize hierarchical tree representation
 - define tree using basic UNION-FIND data structures:
 - each level of tree has a weighted graph, $G_{\text{level}} = (V_{\text{level}}, E_{\text{level}})$
 - each level of tree has a disjoint set of nodes, S_{level}
 - each node, v_i in V_{level} at lowest level of tree hierarchy represents a blob
 - each edge, e_i in E_{level} connects a pair of spatially adjacent nodes
 - weight of each edge indicates feature distance between adjacent nodes
 - each set, s_j in S_{level} points to one or more nodes in that level
 - at lowest level of hierarchy, each set initially points to a single node/blob
Implementation, cont.

• Merge sets at each level of hierarchy
 – first, merge all pairs of sets whose feature distance is less than specified threshold
 – then, merge each remaining set of unit size (i.e. only contains one node) with at least one other set
 • forced set merging ensures low computation complexity

• Create next higher level of tree hierarchy after completing current level
 – create a node, \(v_i \) in \(V_{level} \) for each set \(s_i \) in \(S_{level-1} \)
 – each edge, \(e_i \) in \(E_{level} \) connects a pair of spatially adjacent nodes
 – initialize each set, \(s_i \) in \(S_{level} \) to point to one node, \(v_i \) in \(V_{level} \)

• Repeat above two steps until one of three stopping conditions met:
 – current level contains a single node (i.e. root node of tree)
 – user specified number of segments as \(N \), and current level contains \(N \) nodes
 – user specified feature distance of \(X \), and feature distance between all connected nodes at current level is greater than \(X \)
Hierarchical Tree Representation
Feature Distance

- Each node has 12 feature dimensions
 - Six values for the mean and deviation values of RGB color intensity
 - Six values for the mean and deviation values of texture from the wavelet transform in the horizontal, vertical, and oblique directions
 - for the lowest hierarchy level, only the three mean values from wavelet analysis are used, since no deviation values can be obtained from nodes containing only one blob

- Computation of the feature value for the six mean values \((1 \leq i \leq 6)\) and deviation values \((7 \leq j \leq 12)\), respectively:
 \[
 v.f_i = \frac{1}{\sum_{u \in S} u.size} \sum_{u \in S} u.size * u.f_i \\
 v.f_j = \sqrt{\frac{\sum_{u \in S} u.size * (u.f_{j-6} - v.f_{j-6})^2}{\sum_{u \in S} u.size}}
 \]

- Computation of the feature distance between two adjacent sets:
 \[
 e.dist = \sqrt{\frac{\sum_{i=1}^{12} (v_1.f_i - v_2.f_i)^2}{12}}
 \]
Computation Complexity

- Overall computation complexity

\[O\left(MN + \frac{MN}{K^2} \log\left(\frac{MN}{K^2} \right) \right) \]

- Forcing each set to merge with at least one other set at each level ensures that:
 - the number of nodes in each parent level is no more than half the number of nodes in its child level
 - the number of hierarchy levels is no more than:

\[\log\left(\frac{MN}{K^2} \right) \]

- Please see paper for full details of computation complexity analysis
Segmentation Examples
Segmentation Examples

[Images of segmented objects]
Conclusions

• Examples confirm that hierarchical segmentation effectively preserves spatial relationships
 – i.e. there are no discontinuous segments

• Achieved low computational complexity through forced merging
 – will partially relax the degree of forced merging in future models

• Using wavelet transform on $K \times K$-sized blobs of pixels provides texture and orientation information as well as color intensity

• Developed a flexible stopping mechanism
 – segmentation stop point may be specified via three methods:
 • desired number of segments
 • maximum feature distance for merging segments
 • unspecified – produces full tree hierarchy representation, which may be then be traversed as necessary to find desired segment separation points
Future Work

• Allow pixel-level segmentation instead of just blob-level segmentation
 – requires special method for computing feature values for pixels in the same blob

• Partially relax requirement that each unit-sized set be merged with at least one other set in each level
 – require at least N percent of unit-sized sets to be merged, so that resulting number of nodes at parent levels is markedly reduced
 – computation complexity will become a function of N

• Experiment with different weights for each feature dimension
 – currently weighting is equal across all dimensions

• Use machine learning for feedback-based segmentation
 – machine learning will adjust feature weights as appropriate