Fully Polynomial-Time Approximation Scheme for Subset Sum
Lecture notes by Michael Goldwasser

Input: Set S of positive integers x_1, x_2, \ldots, x_n and a target goal t.
Decision problem: Is it possible to find a subset of S that sums precisely to t?
Optimization problem: What is largest possible subset sum that is at most t?

We saw an $O(n \cdot t)$ algorithm that solves the decision problem, and which can easily be adapted to solve the optimization problem (we’ll review below). But this is not formally a polynomial algorithm because the problem input size is $O(n \cdot \log t)$.

Unless P = NP, there cannot be a polynomial-time solution. But we will see that we can get a polynomial time algorithm that guarantees to find a solution that is at most a factor of $(1 + \epsilon)$ away from the optimal solution for any constant $\epsilon > 0$. The catch is that the runtime depends on epsilon, specifically, $O(\frac{1}{\epsilon} \cdot n^2 \cdot \log t)$. So the closer you want to guarantee you are to the optimal solution, the more expensive the algorithm becomes, and you would need to get to $\epsilon < \frac{1}{t}$ to be sure that error is strictly less than 1, yet then runtime is back to dependence on t.

Since Chapter 35.5 of CLRS provides formal writeup, we get to instead frame the big picture in our presentation.

Exact Algorithm

We wish to build a list P of all sums that can be formed from subsets of S. We can build this iteratively by computing P_i which is such a list using only subsets of $\{x_1, x_2, \ldots, x_i\}$, and thus $P = P_n$. Given P_{i-1} we can form P_i which consists of everything from P_{i-1} (since we can choose not to use x_i or any sum we can get by adding x_i to any of the totals found in P_{i-1} (we denote this as “$P_i - P_{i-1} + x_i$”).

If we initialize $P_0 = <0>$ and we maintain each in sorted order, we can easily merge sequences P_{i-1} and $P_{i-1} + x_i$ in time linear in the length of the sequence (and we could also throw away any values greater than t as we go). But the problem is that in general it may be that $|P_i| = 2^i$, and so runtime could be $\Theta(2^n)$, or if throwing away large elements, $\Theta(n \cdot t)$, which is not polynomial in the input size.

Example: $S = \{1, 4, 5\}$.

$L_0 = <0>$
$L_1 = <0, 1>$
$L_2 = <0, 1, 4, 5>$
$L_3 = <0, 1, 4, 5, 6, 9, 10>$

Approximation Algorithm

The key insight will be a subroutine to “trim” our list of values at each stage based on a trimming parameter δ with $0 < \delta < 1$. Subroutine $\text{Trim}(L, \delta)$ will reduce list L of integers to a subsequence L' while guaranteeing that for any $y \in L$ there remains some $z \in L'$ such that $\frac{y}{1+\delta} \leq z \leq y$. In effect z becomes a nearby substitute for removed y.

1
As an example, with $\delta = 0.1$ and $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ we might trim to $L' = \langle 10, 12, 15, 20, 23, 29 \rangle$. Notice that removed 11 has a nearby substitute in 10 as $11 \leq 10 \leq 11$. Similarly, elements 21 and 22 are sufficiently approximated by 20, and removed 24 is approximated by remaining 23.

Assume we maintain $L = \langle y_1, y_2, \ldots, y_m \rangle$ in sorted order such that $y_1 < y_2 < \cdots < y_m$. We can implement the following strategy for trimming in $O(m)$ time.

Trim(L, δ)

$L' = \langle y_1 \rangle$

last = y_1

for $j = 2$ to m

if $y_j >$ last $\cdot (1 + \delta)$

append y_j to L'

last = y_j

return L'

Note as well that if we only keep values t or less in result L', then $|L'| \leq 2 + \log(1+\delta) t$, because each pair of remaining elements $z < z'$ we have separation such that $z' > (1 + \delta) z$.

Our overall approximation algorithm is as follows for some $0 < \epsilon < 1$:

Approx-Subset-Sum(S, t, ϵ)

$n = |S|$

$L_0 = \langle 0 \rangle$

for $i = 1$ to n

$L_i = \text{Merge}(L_{i-1}, L_{i-1} + x_i)$

$L_i = \text{Trim}(L_i, \frac{\epsilon}{2n})$

remove form L_i any values that are strictly greater than t

return largest value in L_n

Before proving that this algorithm provides a polynomial-time approximation scheme, we cite some underlying mathematical facts about logs and exponents for $x > 0$.

Fact 1: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$

Fact 2: $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$

Fact 3: $\ln(1 + x)$ satisfies $\frac{x}{1+x} \leq \ln(1 + x) \leq x$

Let’s first argue that the running time of the proposed algorithm is $O(\frac{1}{\epsilon} \cdot n^2 \cdot \ln t)$. By earlier argument, and given choice of $\delta = \frac{\epsilon}{2n}$, we have that the size of any L_i is

$$|L_i| \leq 2 + \log(1+\frac{\epsilon}{2n}) \cdot t = 2 + \frac{\ln t}{\ln (1 + \frac{\epsilon}{2n})}$$

$$\leq 2 + \frac{2n}{\epsilon} \cdot \left(1 + \frac{\epsilon}{2n} \right) \cdot \ln t = 2 + \frac{2n + \epsilon}{\epsilon} \cdot \ln t$$

$$\leq 2 + \frac{3n}{\epsilon} \cdot \ln t = O(\frac{1}{\epsilon} \cdot n \cdot \ln t)$$

And thus are overall algorithm does n passes each of which is linear in the list length.
Lemma. For any \(y \in P_i \), there exists \(z \in L_i \) such that

\[
\frac{y}{(1 + \frac{\epsilon}{2n})} \leq z \leq y
\]

Proof. Induction on \(i \) \hfill \Box

Theorem. If \(y^* \) is true optimal sum and \(z^* \) is value returned by the algorithm, then \(\frac{y^*}{z^*} \leq 1 + \epsilon \).

Proof. By Lemma,

\[
\frac{y^*}{z^*} \leq \left(1 + \frac{\epsilon}{2n}\right)^n.
\]

By Fact 2, we get that

\[
\lim_{n \to \infty} \left(1 + \frac{\epsilon}{2n}\right)^n = e^{\epsilon/2}.
\]

Furthermore, by derivative we find that expression \((1 + \frac{\epsilon}{2n})^n\) is strictly increasing and thus we approach the limit from below and for fixed \(n \) we have

\[
\left(1 + \frac{\epsilon}{2n}\right)^n \leq e^{\epsilon/2}
\]

\[
\leq 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \quad \text{due to Fact 1}
\]

\[
\leq 1 + \epsilon \quad \text{due to } 0 < \epsilon < 1
\]

\hfill \Box