Problem F: Top This

Source file: top.{c, cpp, java}
Input file: top.in

The game Top This is played with pieces made up of four unit squares placed so that each square shares a side with at least one other square. This results in the following seven pieces:

A.
B.
C.
D.
E.
F.
G.

Fig. 1: The playing pieces

To play the game you are given three red pieces and three blue pieces. Your goal is to arrange the three red pieces on a grid so that they do not overlap each other (although they may have incident sides), and then to arrange the three blue pieces on top of the red pieces so that they cover precisely the same squares.

For example, suppose our red pieces include shape B and two copies of shape C, and our blue pieces were shape B, shape D, and shape E. We could create identical shapes by combining them like so:

Fig. 2: Combination of B, C, and C
Fig. 3: Combination of B, D, and E

Notice that you may rotate each piece independently to whatever orientation you choose. However, you may not flip the piece over. (Doing so would change a piece of shape B to a piece of shape D, and vice versa; it would similarly swap E and G.)

Your job is to solve a Top This puzzle and report a shape that can be made from both groups of pieces, if possible. We further constrain the problem by only considering solutions that can be placed on a six-by-six grid.

It is possible that there will be more than one solution to the puzzle—and even if there is only one solution, there will be many different positions and orientations that the shape could be in. You are to give the shape that comes first based on the following ordering:

Given two solutions, examine the squares in row-major order (i.e., from left-to-right in each row, starting with the top row) until you find the first square that is different between the two. The solution in which the square is filled comes before the solution in which the square is empty.
Input: The first line of input contains a number T, where $1 \leq T \leq 5$. The remaining T lines represent T data sets, one per line. Each data set consists of a string of three characters, a single space, and another string of three characters. Each character will be an uppercase letter from A to G representing one of the seven pieces as labeled in Figure 1 above. The first three characters will be the red pieces; the last three characters will be the blue pieces.

Output: For each data set you should first output the ordinal of the data set on its own line: 1 for the first set, 2 for the second, and so on. After the ordinal should be the solution, printed as six lines with six characters per line. Each character represents a unit square—a hash mark (#) indicates a filled square, while a period (.) indicates an empty square. The filled squares should describe the first shape that can be formed by both the red pieces and the blue pieces, as per the ordering defined above. If there is no possible solution, simply print “No solution” on a single line.

<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
</table>
| 4 BCC BDE BCC EFG AAA CCE ADG DEE | 1
###.#.
..###.
..####.
...... |
| 2 No solution | 2
###..
.####.
..###
...... |
| 3 | 3
###..
.####.
...... |
| 4 | 4
###..
.####.
...... |
Problem C: Hex Tile Equations

Source file: hex.{c, cpp, java}
Input file: hex.in

An amusing puzzle consists of a collection of hexagonal tiles packed together with each tile showing a digit or '=' or an arithmetic operation '+', '-', '*', or '/'. Consider continuous paths going through each tile exactly once, with each successive tile being an immediate neighbor of the previous tile. The object is to choose such a path so the sequence of characters on the tiles makes an acceptable equation, according to the restrictions listed below. A sequence is illustrated in each figure above. In Figure 1, if you follow the gray path from the top, the character sequence is "6/3=9-7". Similarly, in Figure 2, start from the bottom left 3 to get "3*21+10=73".

There are a lot of potential paths through a moderate sized hex tile pattern. A puzzle player may get frustrated and want to see the answer. Your task is to automate the solution.

The arrangement of hex tiles and choices of characters in each puzzle satisfy these rules:

1. The hex pattern has an odd number of rows greater than 2. The odd numbered rows will all contain the same number of tiles. Even numbered rows will have one more hex tile than the odd numbered rows and these longer even numbered rows will stick out both to the left and the right of the odd numbered rows.
2. There is exactly one '=' in the hex pattern.
3. There are no more than two '*' characters in the hex pattern.
4. There will be fewer than 14 total tiles in the hex pattern.
5. With the restrictions on allowed character sequences described below, there will be a unique acceptable solution in the hex pattern.

To have an acceptable solution from the characters in some path, the expressions on each side of the equal sign must be in acceptable form and evaluate to the same numeric value. The following rules define acceptable form of the expressions on each side of the equal sign and the method of expression evaluation:

6. The operators '+', '-', '*', and '/' are only considered as binary operators, so no character sequences where '+' or '-' would be a unary operator are acceptable. For example "-2*3=-6" and "1 =5+-4" are not acceptable.
7. The usual precedence of operations is not used. Instead all operations have equal precedence and operations are carried out from left to right. For example "44-4/2=2+3*4" is acceptable and "14=2+3*4" is not acceptable.
8. If a division operation is included, the equation can only be acceptable if the division operation works out to an exact integer result. For example "10/5=12/6" and "7+3/5=3*4/6" are acceptable. "5/2*4=10" is not acceptable because the sides would only be equal with exact mathematical calculation including an intermediate fractional result. "5/2*4=8" is not acceptable because the sides of the equation would only be equal if division were done with truncation.
9. At most two digits together are acceptable. For example, "123+1 = 124" is not acceptable.
10. A character sequences with a '0' directly followed by another digit is not acceptable. For example, "3*05=15" is not acceptable.

With the assumptions above, an acceptable expression will never involve an intermediate or final arithmetic result with magnitude over three million.

Input: The input will consist of one to fifteen data sets, followed by a line containing only 0.

The first line of a dataset contains blank separated integers \(r \) \(c \), where \(r \) is the number of rows in the hex pattern and \(c \) is the number of entries in the odd numbered rows. The next \(r \) lines contain the characters on the hex tiles, one row per line. All hex tile characters for a row are blank separated. The lines for odd numbered rows also start with a blank, to better simulate the way the hexagons fit together. Properties 1-5 apply.

Output: There is one line of output for each data set. It is the unique acceptable equation according to rules 6-10 above. The line includes no spaces.

<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1</td>
<td>6/3=9-7</td>
</tr>
<tr>
<td>6</td>
<td>3*21+10=73</td>
</tr>
<tr>
<td>/ 3</td>
<td>8/4+3*9-2=43</td>
</tr>
<tr>
<td>= 9 -</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>1 + 1</td>
<td></td>
</tr>
<tr>
<td>* 2 0 =</td>
<td></td>
</tr>
<tr>
<td>3 3 7</td>
<td></td>
</tr>
<tr>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>9 -</td>
<td></td>
</tr>
<tr>
<td>* 2 =</td>
<td></td>
</tr>
<tr>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>+ 8 3</td>
<td></td>
</tr>
<tr>
<td>4 / 0</td>
<td></td>
</tr>
</tbody>
</table>

Last modified on October 26, 2008 at 9:27 PM.
In this problem, we consider a special class of tile mosaics, as exemplified in Figure G.1. Each such mosaic is built on a rectangular grid with a white background. Within each cell of the grid is either a square black tile, a triangular black tile in one of the four orientations shown in Figure G.2, or nothing, in which case the grid cell remains white. Furthermore, each mosaic is designed so that any shape that remains white is rectangular (possibly rotated).

To install such a mosaic, an artist starts by placing all the black squares. Remaining black triangles will later be added by assistants in order to complete the pattern. To ensure that the assistants complete the mosaic as envisioned, the artist marks some of the black tiles with a numeric label that indicates the number of black triangles that share an edge with that square. (Black tiles without a label may have any number of neighboring triangles.) The artists provides enough labels to ensure a unique design.

For example, Figure G.3 shows a starting configuration that uniquely defines the mosaic shown in Figure G.1. Given such a starting configuration, you are to determine the number of triangles needed to complete the mosaic.
Input

The input consists of a single test case. The first line contains two integers, $1 \leq W \leq 24$ and $1 \leq H \leq 18$, that designate the width and height of the mosaic, respectively. Following that are H additional lines, each with W characters. The characters 0, 1, 2, 3, and 4 designate black squares with the indicated constraint on the number of neighboring triangles, and the character ‘*’ designates a black square without such a constraint. All remaining locations will be designated with a ‘.’ character and must either be left empty or covered with a single black triangle. Inputs have been chosen so that they define a valid and unique mosaic.

Output

Display the number of triangles used in the mosaic.

<table>
<thead>
<tr>
<th>Sample Input 1</th>
<th>Sample Output 1</th>
</tr>
</thead>
</table>
| 9 5
....0*....
....2....
........
2.......1
.2...3.... | 20 |

<table>
<thead>
<tr>
<th>Sample Input 2</th>
<th>Sample Output 2</th>
</tr>
</thead>
</table>
| 5 5
2...*
.....
.....
.....
*...0 | 14 |

<table>
<thead>
<tr>
<th>Sample Input 3</th>
<th>Sample Output 3</th>
</tr>
</thead>
</table>
| 18 10
*.1.....*2.......**2..
2..................3...
...4.................
....4.............*....
2*...*3.......3.....
.......*.......***..3*
....3.....3..3....
.................4...
...1.............0
..1*2.....2*.....1* | 92 |

1 Recursive Solvers

For today’s practice, we look at the use of recursion to solve various constraint satisfaction problems (for example, typical puzzles). In all of these cases, the goal will be to construct a solution to some problem recursively, by effectively trying all possible solutions, but with the use of commonsense rules to prune partial solutions that must be infeasible. In most cases, it will be difficult for us to give a clean asymptotic analysis of the maximum running time, but we may hope that it will be fast enough in practice for given data sets.

As noted from the success percentages in the table below, these problems are solvable, but typically separate the top-flight teams from the field.

The judge’s data for all of these problems are loaded onto hopper so that you can use our submit script to test your solutions.

(See http://cs.slu.edu/~goldwasser/icpc/resources/ for details and http://cs.slu.edu/~goldwasser/cgi-bin/icpc for links to problem statements.)

<table>
<thead>
<tr>
<th>shortname</th>
<th>Problem</th>
<th>contest</th>
<th>success</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounce</td>
<td>Bounce</td>
<td>2012 Mid-Central</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>cubes</td>
<td>Letter Cubes</td>
<td>2013 Mid-Central</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>sudominoku</td>
<td>Su-domino-ku</td>
<td>2011 Mid-Central</td>
<td>2.1%</td>
<td></td>
</tr>
<tr>
<td>top</td>
<td>Top This</td>
<td>2010 Mid-Central</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>hex</td>
<td>Hex Tile Equations</td>
<td>2008 Mid-Central</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>mosaic</td>
<td>Mosaic</td>
<td>2015 Mid-Central</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>
A puzzle adapted from a 2007 Games Magazine consists of a collection of hexagonal tiles packed together with each tile showing a letter. A *bouncing path* in the grid is a continuous path, using no tile more than once, starting in the top row, including at least one tile in the bottom row, and ending in the top row to the right of the starting tile. *Continuous* means that the next tile in a path always shares an edge with the previous tile.

Each bouncing path defines a sequence of letters. The sequence of letters for the path shown in Figure 1 is BCBCBC. Note that this is just BC repeated three times. We say a path has a *repetitive pattern of length* n if the whole sequence is composed of two or more copies of the first n letters concatenated together. Figure 2 shows a repetitive pattern of length four: the pattern BCBD repeated twice. Your task is to find bouncing paths with a repetitive pattern of a given length.

In each grid the odd numbered rows will have the same number of tiles as the first row. The even numbered rows will each have one more tile, with the ends offset to extend past the odd rows on both the left and the right.

Input: The input will consist of one to twelve data sets, followed by a line containing only 0.

The first line of a data set contains blank separated integers $r\ c\ n$, where r is the number of rows in the hex pattern $(2 \leq r \leq 7)$, c is the number of entries in the odd numbered rows, $(2 \leq c \leq 7)$, and n is the required pattern length $(2 \leq n \leq 5)$. The next r lines contain the capital letters on the hex tiles, one row per line. All hex tile characters for a row are blank separated. The lines for odd numbered rows also start with a blank, to better simulate the way the hexagons fit together.

Output: There is one line of output for each data set. If there is a bouncing path with pattern length n, then output the pattern for the *shortest* possible path. If there is no such path, output the phrase: *no solution*. The data sets have been chosen such that the shortest solution path is unique, if one exists.
<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
</table>
| 3 3 2
B D C
C E B G
B C B
3 5 4
A B E B D
A C D C A D
D B B B C
3 3 4
B D C
C E B G
B C B
3 4 4
B D H C
C E F G B
B C B C
0 | BCBCBC
BCBDBCBD
no solution
BCBCBCBC |
Problem E: Letter Cubes

Source file: cubes.{c, cpp, java}
Input file: cubes.in

This problem is based on a puzzle by Randall L. Whipkey.

In the game of Letter Cubes, there are a set of cubes, with each face of each cube having a letter of the alphabet, such that no letter appears more than once within the entire set. The maximum number of cubes is 4, allowing for up to 24 of the 26 letters of the alphabet to occur.

Words are formed by rearranging and turning the cubes so that the top letters of all the cubes together spell a word. The 13 words below have been made using a particular set of cubes.

CLIP
CLOG
CONE
DISH
FAZE
FURL
MARE
MOCK
QUIP
STEW
TONY
VICE
WARD

Only 23 distinct letters were used in the above words, so we will tell you the extra information that a B is included on one cube. Can you now determine the letters on each cube? For the above set of words, there is indeed a unique set of cubes. We will state this solution in canonical form as

ABCHTU DEKLQY FGIMNW OPRSVZ

Note that the letters on each individual cube are stated as a string of characters in alphabetical order, and the four 6-letter strings representing the four cubes are also listed in alphabetical order.
A simpler example relies on two cubes, forming the following 11 two-character strings (although the puzzles are more fun when the strings are actual words, they do not need to be):

PI
MU
HO
WE
WO
BE
MA
HI
RE
AB
PY

The only solution for the two cubes forming these strings is

AEIOUY BHMPRW

The same two cubes could be determined without the last pair PY being listed, as long as you were told that there was a Y on one cube. Your job is to make similar deductions.

Input: The input will contain from 1 to 20 datasets. The first line of each dataset will include a positive integer \(n \) (\(6 \leq n \leq 30 \)) and a character \(c \), described below. The next \(n \) lines will each contain a string of uppercase letters. Each string will be the same length, call it \(k \), with \(2 \leq k \leq 4 \). Following the last dataset is a line containing only 0.

Returning to the issue of the special character, \(c \), on the first input line for each dataset, there will be two cases to consider. Recall that the implicit set of \(k \) cubes must use \(6^k \) distinct letters on their collective faces. If all \(6^k \) of those letters appear within the set of strings, then the character \(c \) on the first line of input is a hyphen, `-'. Otherwise, the strings have been chosen so that only one letter on the cubes does not appear. In this case, the character \(c \) on the first line of input will be that undisplayed letter. (For example, the \(B \) in our opening puzzle.)

Output: There is one line of output for each dataset, containing a 6-letter string for each cube, showing the letters on the faces of that cube. Each of those strings should have its letters in alphabetical order, and the set of strings should be given in alphabetical order with respect to each other, with one space between each pair. We have chosen datasets so that each has a unique solution.
<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 B CLIP CLOG CONE DISH FAZE FURL MARE MOCK QUIP STEW TONY VICE WARD</td>
<td>ABCHTU DEKLOY FGIMNW OPRSVZ AEIOUY BHMPRW AEIOUY BHMPRW</td>
</tr>
<tr>
<td>11 - PI MU HO WE WO BE MA HI RE AB PY 10 Y PI MU HO WE WO BE MA HI RE AB 0</td>
<td></td>
</tr>
</tbody>
</table>
Problem F: Top This

Source file: top.{c, cpp, java}
Input file: top.in

The game *Top This* is played with pieces made up of four unit squares placed so that each square shares a side with at least one other square. This results in the following seven pieces:

![Fig. 1: The playing pieces](image)

A. B. C. D.

E. F. G.

To play the game you are given three red pieces and three blue pieces. Your goal is to arrange the three red pieces on a grid so that they do not overlap each other (although they may have incident sides), and then to arrange the three blue pieces on top of the red pieces so that they cover precisely the same squares.

For example, suppose our red pieces include shape B and two copies of shape C, and our blue pieces were shape B, shape D, and shape E. We could create identical shapes by combining them like so:

![Fig. 2: Combination of B, C, and C](image)

![Fig. 3: Combination of B, D, and E](image)

Notice that you may rotate each piece independently to whatever orientation you choose. However, you may *not* flip the piece over. (Doing so would change a piece of shape B to a piece of shape D, and vice versa; it would similarly swap E and G.)

Your job is to solve a *Top This* puzzle and report a shape that can be made from both groups of pieces, if possible. We further constrain the problem by only considering solutions that can be placed on a six-by-six grid. It is possible that there will be more than one solution to the puzzle—and even if there is only one solution, there will be many different positions and orientations that the shape could be in. You are to give the shape that comes first based on the following ordering:

Given two solutions, examine the squares in row-major order (i.e., from left-to-right in each row, starting with the top row) until you find the first square that is different between the two. The solution in which the square is filled comes *before* the solution in which the square is empty.
Input: The first line of input contains a number T, where $1 \leq T \leq 5$. The remaining T lines represent T data sets, one per line. Each data set consists of a string of three characters, a single space, and another string of three characters. Each character will be an uppercase letter from A to G representing one of the seven pieces as labeled in Figure 1 above. The first three characters will be the red pieces; the last three characters will be the blue pieces.

Output: For each data set you should first output the ordinal of the data set on its own line: 1 for the first set, 2 for the second, and so on. After the ordinal should be the solution, printed as six lines with six characters per line. Each character represents a unit square—a hash mark (#) indicates a filled square, while a period (.) indicates an empty square. The filled squares should describe the first shape that can be formed by both the red pieces and the blue pieces, as per the ordering defined above. If there is no possible solution, simply print “No solution” on a single line.

<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
| BCC BDE | #####.
| BCC EFG | .#.#.
| AAA CCE | ..###.
| ADG DEE | ..####
| |
| | 2 No solution |
| 3 | 3 |
| | ###.. |
| | .###. |
| | ..### |
| |
| |
| | 4 |
| | ###.. |
| | .###. |
| | ..### |
| |
| |

Problem D: Su-domino-ku

Source file: sudominoku.{c, cpp, java}
Input file: sudominoku.in

As if there were not already enough sudoku-like puzzles, the July 2009 issue of Games Magazine describes the following variant that combines facets of both sudoku and dominos. The puzzle is a form of a standard sudoku, in which there is a nine-by-nine grid that must be filled in using only digits 1 through 9. In a successful solution:

- Each row must contain each of the digits 1 through 9.
- Each column must contain each of the digits 1 through 9.
- Each of the indicated three-by-three squares must contain each of the digits 1 through 9.

For a su-domino-ku, nine arbitrary cells are initialized with the numbers 1 to 9. This leaves 72 remaining cells. Those must be filled by making use of the following set of 36 domino tiles. The tile set includes one domino for each possible pair of unique numbers from 1 to 9 (e.g., 1+2, 1+3, 1+4, 1+5, 1+6, 1+7, 1+8, 1+9, 2+3, 2+4, 2+5, ...). Note well that there are not separate 1+2 and 2+1 tiles in the set; the single such domino can be rotated to provide either orientation. Also, note that dominos may cross the boundary of the three-by-three squares (as does the 2+9 domino in our coming example).

To help you out, we will begin each puzzle by identifying the location of some of the dominos. For example, Figure 1 shows a sample puzzle in its initial state. Figure 2 shows the unique way to complete that puzzle.
Input: Each puzzle description begins with a line containing an integer N, for $10 \leq N \leq 35$, representing the number of dominos that are initially placed in the starting configuration. Following that are N lines, each describing a single domino as $ULUVLV$. Value U is one of the numbers on the domino, and LU is a two-character string representing the location of value U on the board based on the grid system diagrammed in Figure 1. The variables V and LV representing the respective value and location of the other half of the domino. For example, our first sample input beings with a domino described as $6\ B2\ 1\ B3$. This corresponds to the domino with values $6+1$ being placed on the board such that value 6 is in row B, column 2 and value 1 in row B, column 3. The two locations for a given domino will always be neighboring.

After the specification of the N dominos will be a final line that describes the initial locations of the isolated numbers, ordered from 1 to 9, using the same row-column conventions for describing locations on the board. All initial numbers and dominos will be at unique locations.

The input file ends with a line containing 0.

Output: For each puzzle, output an initial line identifying the puzzle number, as shown below. Following that, output the 9x9 sudoku board that can be formed with the set of dominos. There will be a unique solution for each puzzle.

<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 6 B2 1 B3 2 C4 9 C3 6 D3 8 E3 7 E1 4 F1 8 B7 4 B8 3 F5 2 F6 7 F7 6 F8 5 G4 9 G5 7 I8 8 I9 7 C9 2 B9 C5 A3 D9 I4 A9 E5 A2 C6 I1 11</td>
<td>Puzzle 1 872643195 361975842 549218637 126754983 738169254 495832761 284597316 657381429 913426578</td>
</tr>
</tbody>
</table>
Problem C: Hex Tile Equations

Source file: hex.{c, cpp, java}
Input file: hex.in

An amusing puzzle consists of a collection of hexagonal tiles packed together with each tile showing a digit or '=' or an arithmetic operation '+', '-', '*', or '/'. Consider continuous paths going through each tile exactly once, with each successive tile being an immediate neighbor of the previous tile. The object is to choose such a path so the sequence of characters on the tiles makes an acceptable equation, according to the restrictions listed below. A sequence is illustrated in each figure above. In Figure 1, if you follow the gray path from the top, the character sequence is "6/3=9-7". Similarly, in Figure 2, start from the bottom left 3 to get "3*21+10=73".

There are a lot of potential paths through a moderate sized hex tile pattern. A puzzle player may get frustrated and want to see the answer. Your task is to automate the solution.

The arrangement of hex tiles and choices of characters in each puzzle satisfy these rules:

1. The hex pattern has an odd number of rows greater than 2. The odd numbered rows will all contain the same number of tiles. Even numbered rows will have one more hex tile than the odd numbered rows and these longer even numbered rows will stick out both to the left and the right of the odd numbered rows.
2. There is exactly one '=' in the hex pattern.
3. There are no more than two '*' characters in the hex pattern.
4. There will be fewer than 14 total tiles in the hex pattern.
5. With the restrictions on allowed character sequences described below, there will be a unique acceptable solution in the hex pattern.

To have an acceptable solution from the characters in some path, the expressions on each side of the equal sign must be in acceptable form and evaluate to the same numeric value. The following rules define acceptable form of the expressions on each side of the equal sign and the method of expression evaluation:

6. The operators '+', '-', '*', and '/' are only considered as binary operators, so no character sequences where '+' or '-' would be a unary operator are acceptable. For example "-2*3=-6" and "1 =5+-4" are not acceptable.
7. The usual precedence of operations is not used. Instead all operations have equal precedence and operations are carried out from left to right. For example "44-4/2=2+3*4" is acceptable and "14=2+3*4" is not acceptable.
8. If a division operation is included, the equation can only be acceptable if the division operation works out to an exact integer result. For example "10/5=12/6" and "7+3/5=3*4/6" are acceptable. "5/2*4=10" is not acceptable because the sides would only be equal with exact mathematical calculation including an intermediate fractional result. "5/2*4=8" is not acceptable because the sides of the equation would only be equal if division were done with truncation.

9. At most two digits together are acceptable. For example, "123+1 = 124" is not acceptable.

10. A character sequences with a '0' directly followed by another digit is not acceptable. For example, "3*05=15" is not acceptable.

With the assumptions above, an acceptable expression will never involve an intermediate or final arithmetic result with magnitude over three million.

Input: The input will consist of one to fifteen data sets, followed by a line containing only 0.

The first line of a dataset contains blank separated integers \(r \) \(c \), where \(r \) is the number of rows in the hex pattern and \(c \) is the number of entries in the odd numbered rows. The next \(r \) lines contain the characters on the hex tiles, one row per line. All hex tile characters for a row are blank separated. The lines for odd numbered rows also start with a blank, to better simulate the way the hexagons fit together. Properties 1-5 apply.

Output: There is one line of output for each data set. It is the unique acceptable equation according to rules 6-10 above. The line includes no spaces.

<table>
<thead>
<tr>
<th>Example input:</th>
<th>Example output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1</td>
<td>6/3=9-7</td>
</tr>
<tr>
<td>6</td>
<td>3*21+10=73</td>
</tr>
<tr>
<td>/ 3 =</td>
<td>8/4+3*9-2=43</td>
</tr>
<tr>
<td>9 - 7</td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>1 + 1</td>
<td></td>
</tr>
<tr>
<td>* 2 0 =</td>
<td></td>
</tr>
<tr>
<td>3 3 7</td>
<td></td>
</tr>
<tr>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>9 -</td>
<td></td>
</tr>
<tr>
<td>* 2 =</td>
<td></td>
</tr>
<tr>
<td>3 4</td>
<td></td>
</tr>
<tr>
<td>+ 8 3</td>
<td></td>
</tr>
<tr>
<td>4 / 0</td>
<td></td>
</tr>
</tbody>
</table>

Last modified on October 26, 2008 at 9:27 PM.
Problem G
Mosaic
Time limit: 1 second

In this problem, we consider a special class of tile mosaics, as exemplified in Figure G.1. Each such mosaic is built on a rectangular grid with a white background. Within each cell of the grid is either a square black tile, a triangular black tile in one of the four orientations shown in Figure G.2, or nothing, in which case the grid cell remains white. Furthermore, each mosaic is designed so that any shape that remains white is rectangular (possibly rotated).

To install such a mosaic, an artist starts by placing all the black squares. Remaining black triangles will later be added by assistants in order to complete the pattern. To ensure that the assistants complete the mosaic as envisioned, the artist marks some of the black tiles with a numeric label that indicates the number of black triangles that share an edge with that square. (Black tiles without a label may have any number of neighboring triangles.) The artists provides enough labels to ensure a unique design.

For example, Figure G.3 shows a starting configuration that uniquely defines the mosaic shown in Figure G.1. Given such a starting configuration, you are to determine the number of triangles needed to complete the mosaic.
Input

The input consists of a single test case. The first line contains two integers, $1 \leq W \leq 24$ and $1 \leq H \leq 18$, that designate the width and height of the mosaic, respectively. Following that are H additional lines, each with W characters. The characters 0, 1, 2, 3, and 4 designate black squares with the indicated constraint on the number of neighboring triangles, and the character '*' designates a black square without such a constraint. All remaining locations will be designated with a '.' character and must either be left empty or covered with a single black triangle. Inputs have been chosen so that they define a valid and unique mosaic.

Output

Display the number of triangles used in the mosaic.

Sample Input 1

```
9 5
....0*....
....2....
........
2.......1
.2..3....
```

Sample Output 1

```
20
```

Sample Input 2

```
5 5
2...*
.....
.....
.....
*...0
```

Sample Output 2

```
14
```

Sample Input 3

```
18 10
*1....*2.....**2..
2.............3...
...4.............
....4.*........*
2*...*3.....3....
.......*.*...*3*
....3.....3....
.............4..
...1............0
..1*2.....2*....1*
```

Sample Output 3

```
92
```

ACM-ICPC 2015 Mid-Central Regional Problem G: Mosaic