
A Graphics Package for the First Day and Beyond

Michael H. Goldwasser
Dept. Mathematics and Computer Science

Saint Louis University
221 North Grand Blvd

St. Louis, Missouri 63103-2007
goldwamh@slu.edu

David Letscher
Dept. Mathematics and Computer Science

Saint Louis University
221 North Grand Blvd

St. Louis, Missouri 63103-2007
letscher@slu.edu

ABSTRACT

We describe cs1graphics, a new Python drawing package
designed with pedagogy in mind. The package is simple
enough that students can sit down and make use of it from
the first day of an introductory class. Yet it provides seam-
less support for intermediate and advanced lessons as stu-
dents progress. In this paper, we discuss its versatility in the
context of an introductory course. The package is available
at www.cs1graphics.org.

Categories and Subject Descriptors

I.3.4 [Computer Graphics]: Graphics Utilities—paint sys-
tems; K.3.2 [Computers and Education]: Computer and
Information Science Education—computer science education;
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming

General Terms

Design, Human Factors

Keywords

CS1, Python

1. INTRODUCTION
Computer graphics has served as a domain for teaching

computer programming dating back to Logo’s turtle graph-
ics in the 1970s [1, 8]. Manipulating graphics can be both
rewarding and motivating, providing tangible feedback for
students. Most modern languages support industrial graph-
ics libraries, but these are widely regarded as unsuitable for
beginning programmers. This has led to decades filled with
custom graphics packages for use in education. In Java,
the most widely used packages today include Java Power
Tools [9], objectdraw[2], and acm.graphics from the ACM
Java Task Force [10]. Guzdial’s multimedia computation
package can be used with Java or Jython [7], and Zelle pro-
vides an object-oriented drawing package for Python [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

In 2005, we redesigned our object-oriented CS1 course
using Python as the instructional language [6]. We wished to
include the manipulation of 2D graphical objects, yet none
of the existing Python packages satisfied our requirements.
Faced with creating a package from scratch, we took the
opportunity to develop a design that graciously combined
our favorite features of existing (Python and Java) libraries.

Our fundamental goal was to achieve a design that is sim-
ple enough to use from the very first day, yet rich enough to
provide a scaffold for more advanced lessons. Our criteria for
simplicity is that a student can sit down and create interest-
ing images, with only the most modest preliminary coach-
ing. The intermediate and advanced lessons enabled by our
graphics package involve flow of control, container classes,
object-oriented principles, inheritance, recursion, and event-
driven programming. Yet we insist that the support for these
lessons not adversely impact the ease of use for that first day.

With this paper, we wish to announce the availability
of the package and to describe its support of pedagogy.
The package is an object-oriented Python module named
cs1graphics, available at www.cs1graphics.org. We believe
that its combination of simplicity and functionality makes it
a valuable tool for students in a CS0 or CS1 course, for high
school students, and even for an enthusiastic ten-year old.

2. EXISTING GRAPHICS PACKAGES
Although the use of Python in education has increased

in recent years, the available pedagogical graphics packages
are not nearly as mature as those for Java. The standard
industrial package in Python is Tkinter, which is a wrapper
for the Tcl/Tk widget set. Yet it relies upon a complex set
of classes, requires keyword parameter passing, and draws
attention to the event loop even when creating static images.
The features that make Tkinter a useful tool for experienced
programmers make it unsuitable for beginning students.

For educators, the most widely used Python graphics pack-
age is that of Zelle [11]. It performs quite well as that “first
day” package, allowing students to create a graphics win-
dows and to draw basic geometric shapes. Yet Zelle’s pack-
age lacks the more intermediate and advanced support, as
it does not allow existing shapes to be resized, rotated, or
flipped, does not support any composite collection abstrac-
tion, nor is it easily extensible through inheritance.

Guzdial’s Jython/Java library [7] is a wonderful package
for manipulating multimedia formats. However, it does not
have adequate support for creating and manipulating images
composed from geometric objects.

3. THE FIRST DAY
An introduction to cs1graphics begins with the Canvas

class, representing a window upon which we can draw. The
mutable attributes of a canvas include its height, width,
background color, and title. Using Python’s interpreter, stu-
dents can immediately begin experimenting as follows.

>>> from cs1graphics import *

>>> paper = Canvas()

>>> paper.setBackgroundColor('skyBlue')
>>> paper.setWidth(400)

>>> paper.setHeight(300)

>>> paper.setTitle('My World')

Each command is executed immediately when entered, with
the tangible effect visible to the student. So after instanti-
ating the original canvas, a window immediately pops up on
the screen. After the call to setBackgroundColor, the color of
the canvas window changes. Such isolated manipulation of
the canvas serves as a warmup; the next stage is for students
to place objects on the canvas.

The core of our module is a hierarchy of Drawable objects.
Students can be led through the creation of shapes and the
placement of those shapes on a canvas. Continuing our ear-
lier interpreter session, the syntax is as follows.

>>> sun = Circle()

>>> sun.setRadius(30)

>>> sun.setFillColor('yellow')
>>> sun.move(250, 50)

>>> paper.add(sun)

The initial construction and configuration of the circle have
no immediate effect on the canvas. It brings that shape into
existence, but it will not be visible until explicitly added to
the canvas. We could have added the circle to the canvas
before configuring its properties, in which case each inter-
mediate state would be rendered.

Other classes of drawable objects include Rectangle, Square,
Path (i.e., a polyline), Polygon (i.e., a closed and fillable
path), Text, and Image (wrapper for standard image files).

We describe our system to students using the following
physical analogy. A canvas is like a bulletin board and the
shapes like paper cutouts that can be fastened to the canvas
using a thumbtack. Each shape has a local reference point
that corresponds to the spot through which the thumbtack
is placed. The position of the shape relative to the canvas
is described using the coordinate system of the canvas.

After walking out of the classroom on this first day, a
student can compose static scenes. With the addition of the
sleep command, straight-line code can be used to develop
dynamic animations. The first take-home assignment in our
course asks students to create a multiframe animation of
their favorite animals. Students have a great time with this
beginning, often submitting assignments with hundreds of
lines of code and great artistic details. In the context of a
CS0 course, such a project might serve as the pinnacle of a
brief programming unit.

4. INTERMEDIATE LESSONS
After completing the first assignment, our CS1 students

begin to understand some important programming concepts.
They also realize that there must be more convenient ways
to perform some tasks from their original animations.

Control Structures. Even with straight-line code, the use
of the sleep command provides an aspect of timing that rein-
forces the concept of flow of control. In initial projects, stu-
dents likely relied on a “copy-and-paste” style, perhaps to
animate motion by a sequence of move, sleep, move, sleep,
move, sleep commands. Even a novice student will realize
that there must be a better way. This provides a natural
segue to discussing control structures, such as the use of a
loop to express the repetition of an object sliding across the
canvas. Additional structures can be motivated in projects,
such as a conditional for simulating the bouncing of a ball
against the wall, or a combination of loops and conditionals
for drawing the alternating colors of a checkerboard.

Principles of Computer Graphics. To support the first
day experience, our software intentionally renders the effect
of each statement as it is executed. Yet for more complex
scenes, this can result in undesired visual artifacts. If dozens
of individual manipulations are required to compose a new
scene, the viewer might notice intermediate frames of the
incomplete image. Students will naturally want to know
how they could avoid such problems; the technical solution
that is desired is to double-buffer images.

Our library supports this by having automatic refreshing
of the canvas as the default for beginners, but a method
to toggle the refresh model. When automatic refreshing is
off, the programmer must explicitly call a refresh method to
force an update of the canvas. This teaches an important
technique in computer graphics while also pushing students
to recognize the distinction between the internal state of the
model and the currently visible image.

Our software also supports general transformations for
all drawable objects through methods such as scale(factor),
rotate(angle), and flip(reflectionAngle). This functionality is
useful both in practice and for pedagogy. When scaling or
rotating an object, the action must be performed relative
to some fixed point. Recall that we earlier introduced the
concept of a reference point as the hypothetical point at
which an object is tacked to the canvas. A default refer-
ence point is defined naturally for each class, yet the user
can reposition an object’s reference point using a method
adjustReference(dx, dy). With our thumbtack analogy, the
shape is not moved at all relative to the canvas, rather the
thumbtack holding it is taken out, repositioned, and rein-
serted. As such, this call has no immediately visible effect.
But it can be a precursor to a rotation or scaling to achieve
desired results. Figure 1 shows two possible rotations of
a square, depending upon the placement of the reference
point. Technically, the reference point need not overlap the
area of the shape; for example we might place a moon’s
reference point aligned with a planet to simulate an orbit.

Figure 1: Rotating a square about two different ref-

erence points. On the left, the square is rotated

about its center point. On the right, the same square

is rotated about its lower-left corner.

Composition. In the first assignment, a student may have
“moved” a dog by first moving the head, then the body,
followed by the tail. If an animal has many individual com-
ponents, this approach may produce visual artifacts, such
as an instantaneous view of the dog’s head detached from
the rest of the body. Even though double buffering might
be used to remedy the artifact, we prefer that the “dog” be
modeled as a single unit rather than as independent com-
ponents. With the piecewise design, a conceptually simple
manipulation of the dog may require dozens of lines of code.

To support a better design our library defines a Layer class
that is a composite, serving as both a container and a draw-
able object. We describe it by physical analogy as a very thin
clear film akin to the animation cells of the early 1900s. We
can attach other shapes directly to this film rather than to
the canvas. The layer can then be placed upon a canvas. As
a composite, a layer allows a programmer to naturally group
shapes that are conceptually related. Furthermore, since
layers are themselves Drawable objects, they can be moved,
scaled, flipped, or rotated coherently and without temporal
artifacts. This provides a means for reinforcing good organi-
zation and design. Also, the functionality is quite powerful;
it can be challenging to accurately scale or rotate a compos-
ite figure when modeled as independent shapes.

The use of layers requires awareness of distinct frames of
reference and contexts. The layer has its own coordinate
system, just as a canvas has a coordinate system. When an
object is added to a layer, its position is specified relative to
the origin of the layer (which need not coincide with the ori-
gin of the canvas). Relative depths are resolved only within
the context of the immediate container. That is, the ren-
dering order for objects on a layer is based upon the depths
of those objects. But the layer is a single composite object;
how that layer should be placed relative to other objects on
a canvas is affected by the layer’s depth attribute. We note
that a layer can be added as a component onto another layer,
allowing for greater levels of abstraction and an exploration
of recursive structures. The following code demonstrates the
use of a layer to model a simple car.

car = Layer()
tire1 = Circle(10, Point(−20,−10))
tire1.setFillColor('black')
car.add(tire1)

tire2 = Circle(10, Point(20,−10))
tire2.setFillColor('black')
car.add(tire2)

body = Rectangle(70, 30, Point(0, −25))
body.setFillColor('blue')
body.setDepth(60) # behind the tires
car.add(body) # (as default depth is 50)

paper.add(car)
car.move(110,180) # move the car as a whole
car.scale(2.0) # scale the car as a whole
body.setFillColor('purple') # mutate component

Three individual components are added to the layer instance
and then the layer is added to the canvas. Notice that the
layer can be moved or scaled as a whole, yet that individ-
ual components from that layer (e.g., the body) can still be
identified and manipulated directly. The depth attribute for

Figure 2: An example of a car incorporated into a

scene.

the three components affects the relative placement of those
components within the layer. The car’s depth relative to the
canvas would be controlled independently. This allows us to
incorporate the car into an existing scene, such as the one
shown in Figure 2.

5. BASICS OF OBJECT-ORIENTATION
The design of cs1graphics is heavily object-oriented, but

it is up to the instructor whether or not to draw attention
to this fact. In this section, we highlight several potential
lessons about object-oriented principles.

Calling Syntax. With many objects in play, the signifi-
cance of the identifier in the method-calling syntax can be
emphasized. That is, a programmer cannot issue the unqual-
ified command move(110,180), but instead must explicitly
identify the object to manipulate as in car.move(110,180).

Object State. The basic manipulations of a canvas and the
drawable objects instills an awareness of objects. Students
see that the state of an object can be mutated, and that the
state of one instance is independent of other instances. They
will naturally observe that different classes support a differ-
ent menu of behaviors (e.g.,that Canvas instances support
setHeight while Circle instances support setFillColor).

Type Awareness. Although Python is dynamically typed,
our functions explicitly error-check all parameters, raising
meaningful errors when appropriate. Our classes and meth-
ods are also well documented with Python docstrings, avail-
able to students through the interpreter’s help command.

Inheritance Hierarchy. The students’ use of inheritance in
their own code will be explored as an advanced lesson. Long
before that, we highlight our own use of inheritance in defin-
ing the Drawable hierarchy. The commonality among classes’
behaviors makes it relatively easy to learn to use additional
classes; only those methods specific to each new class need
to be mastered. Early exposure to such a hierarchy can
strengthen students’ later ability to identify similarities and
build abstractions in their own designs.

Polymorphism. Our package demonstrates several forms of
polymorphism. As a classic example, Drawable types each
support a method named draw yet with different underlying
implementations.

As an example of parametric polymorphism, whenever a
color is to be specified as a parameter, that color can be
designated as a string from a predefined palette of names,
as an (r,g,b) tuple, or an existing instance of the Color class.
We determine the representation type at runtime. Many of
our functions use optional parameters to provide multiple
calling signatures. For example, our early code fragments
have demonstrated the constructor signature Circle() as well
as Circle(10, Point(20, −10)).

6. INHERITANCE
In the preceding section, we noted that the hierarchical

design of the package provides students initial exposure to
the concept of inheritance. When it comes time to discuss
the use of inheritance for user-defined classes, we leverage
our package in several ways.

Examples of Single and Multiple Inheritance. As a pre-
cursor to having students use inheritance in their own classes,
we offer a behind-the-scene look at our own source code to
demonstrate the inheritance mechanisms. For example, we
can show how the FillableShape class specializes the Shape
class or how the Square class specializes the Rectangle class.

We can also motivate and demonstrate interesting exam-
ples of multiple inheritance in the design of our our pack-
age. We already discussed the Layer class as a hybrid. By
inheriting from Drawable, it receives attributes such as a
depth and a reference point, and behaviors such as scale
and rotate. At the same time, both canvases and layers serve
as containers for drawable objects. We define an underly-
ing GraphicsContainer class that serves as a parent to both
Canvas and Layer, providing the ability to add and remove
objects and to compute the proper painter’s ordering. Based
on these classes, our Layer implementation uses multiple
inheritance, declared as Layer(Drawable, GraphicsContainer).

Extensibility. After demonstrating the technique and syn-
tax of inheritance with our own examples, we ask students
to use the technique. Our hierarchy of Drawable objects is
intentionally extensible, with several good entry points for
inheritance (in fact, quite similar to acm.graphics [10]).

One possible usage is to inherit from one of our most-
derived classes. For example, a Star class can be defined
as a specialization of the existing Polygon class, with a con-
structor that configures the initial placements of the points.
The star inherits all other behaviors from the parent class,
including being fillable, movable, and rotatable. Of course,
an important lesson is that all methods of the parent class
are inherited by default, and so a user could invoke the
addPoint method upon one of our star instances. Robust-
ness could be added by overriding that method to pass or
by raising an exception.

A more general entry point for inheritance is the Layer
class. A child class can assemble components internally,
while inheriting behaviors such as move, scale, and rotate. It
is also possible to inherit directly from the abstract Drawable
class by providing an implementation of a draw method to
compose a rendered image from underlying components.

Revisiting the First Assignment. The extensibility of our
inheritance hierarchy provides an opportunity to improve
the design of the students’ original animation project. The
animals were first implemented as a set of independent parts.
The design was improved with the subsequent introduction
of the Layer composite, but that approach is still less than
ideal. The Layer class supports general behaviors like rotate
and scale, but not behaviors specific to the context of an
animal (e.g., wag a tail). Also, the layer-based approach
does not allow for the animal to be reused in a different
project without significant duplication of code.

Therefore, we ask students to revisit their earlier work
and to design and implement a specialized class to represent
their animal. Past students have designed a Horse that rears
up on its hind legs, a Bird that flaps its wings and flies from
point to point, and a Dog that sits, wags its tails, and barks.
This exercise provides students the opportunity to use cre-
ativity as a designer. They envision interesting behaviors,
select appropriate signatures for the methods, and choose
the internal representation for an animal’s state.

7. RECURSION
Recursion can be a challenging topic for many students

to grasp. Bruce et al. advocate for the early introduction
of structural recursion [3]. They provide examples such as a
ringed target or a fractal-based broccoli rendered using their
objectdraw graphics package. While structural recursion
can be demonstrated with non-graphical examples [5], the
graphical examples carry great intuition.

Within cs1graphics, recursive classes can be developed by
directly extending our Drawable class, or by making use of
Layer composites which can be nested arbitrarily. As an
example, a typical Bullseye instance can be modeled as an
outer circle with a smaller inner Bullseye instance centered
on top, as diagrammed in Figure 3. Here is the constructor
for a Bullseye class that extends the Drawable class.

def init (self, bands, radius, colorA, colorB):
Drawable. init (self) # parent constructor
self.outer = Circle(radius)
self.outer.setFillColor(colorA)

if bands > 1: # construct inner bullseye recursively
newRad = radius * (bands − 1) / bands
self.inner = Bullseye(bands−1, newRad, colorB, colorA)

else:

self.inner = None

Our instance has two data members: outer represents the
outer circle and inner represents a bullseye instance with
one less band, smaller radius, and inverted colors. As a base
case, a bullseye with one band has an outer circle but no
inner component.

Figure 3: Recursive modeling of a Bullseye.

Figure 4: Instances of a Tree class.

Methods such as draw follow a simple pattern, acting
upon the outer circle followed by the inner bullseye, if any.
A similar approach can be used to model other examples of
structural recursion, such as the trees shown in Figure 4.

8. EVENTS AND USER INTERACTION
Bruce et al. also demonstrate the use of event-driven pro-

gramming in teaching introductory topics [4]. To facilitate
such an approach, our library supports two different models
for dealing with events.

Appropriate for those early days is a basic single-threaded
waiting model. The canvas and all drawable shapes sup-
port a wait() method that causes execution of the calling
thread to be suspended until an event such as a mouse click
is received by the indicated object. The wait function returns
an Event instance that stores information about the event
that occurred. As a simple example, here is a program that
repeatedly draws a red ball centered on the point at which
the user clicks on a canvas.

paper = Canvas()
while True:

event = paper.wait() # wait indefinitely for user
ball = Circle(10, event.getMouseLocation())
ball.setFillColor('red')
paper.add(ball)

For a more advanced treatment of event-driven program-
ming, the library supports a listener model for events. An
EventHandler serves as a base class, allowing handlers to
respond to selected event types by overriding the handle
method. As a simple example, here is code using the lis-
tener model to provide functionality similar to the preceding
example.

class CircleDrawHandler(EventHandler):
def handle(self, event):

if event.getDescription() == 'mouse click':
ball = Circle(10, event.getMouseLocation())
ball.setFillColor('red')
event.getTrigger().add(ball)

paper = Canvas()
paper.addHandler(CircleDrawHandler())

Yet the listener model is far more general, as events can be
simultaneously monitored by a combination of listeners. In
the simpler wait model, the flow of control must be blocked
waiting on a specific object.

Our library also supports text boxes, buttons, and a few
other basic GUI widgets as a preview of what students would
see in an industrial strength library for graphical interfaces.

9. CONCLUSIONS
With this paper we introduce cs1graphics, a new Python

drawing package designed with pedagogy in mind. The
strength of our design is the combination of simplicity and
functionality, providing support for beginning and advanced
lessons in the context of a CS1 course.

Comparing our package to existing pedagogical packages,
we find that others are either too limited or too complex.
For example, Zelle’s Python package [11] is sufficiently sim-
ple for beginners, but lacks more advanced features (e.g.,
general transformations, composition, an extensible hierar-
chy). At the other extreme, the acm.graphics library in
Java [10] has similar functionality to our library, yet appears
less approachable on the first day without scaffolding.

10. REFERENCES
[1] H. Abelson and A. diSessa. Turtle Geometry. The

MIT Press, 1980.

[2] K. B. Bruce, A. Danyluk, and T. Murtaugh. A library
to support a graphics-based object-first approach to
CS 1. In Proc. 32nd SIGCSE Technical Symp. on
Computer Science Education (SIGCSE), pages 6–10,
Charlotte, North Carolina, Feb. 2001.

[3] K. B. Bruce, A. Danyluk, and T. Murtaugh. Why
structural recursion should be taught before arrays in
CS1. In Proc. 36th SIGCSE Technical Symp. on
Computer Science Education (SIGCSE), pages
246–250, St. Louis, Missouri, Feb. 2005.

[4] K. B. Bruce, A. Danyluk, and T. P. Murtaugh.
Event-driven programming is simple enough for CS1.
In Proc. Sixth Annual Conf. on Innovation and
Technology in Computer Science (ITiCSE), pages 1–4,
Canterbury, United Kingdom, June 2001.

[5] M. H. Goldwasser and D. Letscher. Teaching
strategies for reinforcing structural recursion with
lists. In Companion to 22nd ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 889–896,
Montreal, Quebec, Canada, Oct. 2007.

[6] M. H. Goldwasser and D. Letscher. Object-Oriented
Programming in Python. Prentice Hall, 2008.

[7] M. Guzdial. Introduction to Computing and
Programming in Python: A Multimedia Approach.
Prentice Hall, 2005.

[8] H. Lieberman. The TV Turtle: a Logo graphics
system for raster displays. In The papers of the ACM
Symposium on Graphic Languages, pages 66–72,
Florida, Apr. 1976.

[9] J. Raab, R. Rasala, and V. K. Proulx. Pedagogical
power tools for teaching Java. In Proc. Fifth Annual
Conf. on Innovation and Technology in Computer
Science (ITiCSE), pages 156–159, Helsinki, Finland,
July 2000.

[10] E. Roberts, K. Bruce, R. Cutler, J. H. Cross II,
S. Grissom, K. Klee, S. Rodger, F. Trees, I. Utting,
and F. Yellin. The ACM Java task force: Final report.
In Proc. 37th SIGCSE Technical Symp. on Computer
Science Education (SIGCSE), pages 131–132,
Houston, Texas, Mar. 2006.

[11] J. M. Zelle. Python Programming: An Introduction to
Computer Science. Franklin, Beedle & Associates,
2003.

