
Dispatching Equal-length Jobs to Parallel Machines

to Maximize Throughput

David P. Bunde1 and Michael H. Goldwasser2

1 Dept. of Computer Science, Knox College
email: dbunde@knox.edu

2 Dept. of Mathematics and Computer Science, Saint Louis University
email: goldwamh@slu.edu

Abstract. We consider online, nonpreemptive scheduling of equal-length jobs on parallel machines.
Jobs have arbitrary release times and deadlines and a scheduler’s goal is to maximize the number of
completed jobs (Pm | rj , pj = p |

P

1 − Uj). This problem has been previously studied under two
distinct models. In the first, a scheduler must provide immediate notification to a released job as to
whether it is accepted into the system. In a stricter model, a scheduler must provide an immediate
decision for an accepted job, selecting both the time interval and machine on which it will run. We
examine an intermediate model in which a scheduler immediately dispatches an accepted job to a
machine, but without committing it to a specific time interval. We present a natural algorithm that is
optimally competitive for m = 2. For the special case of unit-length jobs, it achieves competitive ratios
for m ≥ 2 that are strictly better than lower bounds for the immediate decision model.

1 Introduction

We consider a model in which a scheduler manages a pool of parallel machines. Job requests arrive
in an online fashion, and the scheduler receives credit for each job that is completed by its deadline.
We assume that jobs have equal length and that the system is nonpreemptive. We examine a
series of increasingly restrictive conditions on the timing of a scheduler’s decisions. Specifically, we
consider the following submodels.

unrestricted: In this most flexible model, all requests are pooled by a scheduler. Decisions are
made in real-time, with jobs dropped only when it is clear they will not be completed on time.

immediate notification: In this model, the scheduler must decide whether a job will be admitted
to the system when it arrives. Once admitted, a job must be completed on time. However, the
scheduler retains flexibility by centrally pooling admitted jobs until they are executed.

immediate dispatch: In this model, a central scheduler must immediately assign an admitted
job to a particular machine, but each machine retains autonomy in determining the order in
which to execute the jobs assigned to it, provided they are completed on time.

immediate decision: In this model, a central scheduler must fully commit an admitted job to a
particular machine and to a particular time interval for execution on that machine.

The problem has been previously studied in the unrestricted, immediate notification, and immediate
decision models. Immediate dispatching is motivated by multiprocessor settings where incoming
requests to a server farm or computer cluster are distributed to avoid a centralized queue [1, 14].
Our work is the first to examine the effect of immediate dispatching on throughput maximization.

We introduce a natural algorithm for the immediate dispatching model named FirstFit. In
short, it fixes an ordering of the m machines M1, . . . , Mm, and assigns a newly-arrived job to the
lowest-indexed machine that can feasibly accept it (the job is rejected if it is infeasible on all
machines). We present the following two results regarding the analysis of FirstFit.

– For m = 2, we prove that FirstFit is 5
3 -competitive and that this is the best possible ratio

for a deterministic algorithm with immediate dispatch. This places the model strictly between
the immediate notification model (deterministic competitiveness 3

2) and the immediate decision
model (deterministic competitiveness 9

5).

– For the case of unit-length jobs, we show that FirstFit has competitiveness 1/
(

1 −
(

m−1
m

)m)

for m ≥ 1. Again, the model lies strictly between the others; an EDF strategy gives an optimal
solution in the immediate notification model and our upper bound is less than a comparable
lower bound with immediate decision for any m (both tend toward e

e−1 ≈ 1.582 as m → ∞).

In addition, we present a variety of deterministic and randomized lower bounds for both the imme-
diate dispatch and unrestricted models. Most notably, we strengthen the best-known lower bounds
for the unrestricted and immediate notification models from 6

5 to 5
4 for the asymptotic case as

m → ∞. A summary of results for length p ≥ 3 is given in Table 1, and for p = 1 in Table 2.

Previous Work. Baruah et al. consider an unrestricted model for scheduling jobs of varying
length on a single machine to maximize the number of completed jobs, or the time spent on suc-
cessful jobs [2]. Among their results, they prove that any reasonable nonpreemptive algorithm is
2-competitive with equal-length jobs, and that this is the best deterministic competitiveness. Spe-
cific 2-competitive algorithms are known for the unrestricted model [9], the immediate notification
model [10], and the immediate decision model [6]. We note that for m = 1, the immediate notifi-
cation and immediate dispatch models are the same, as any accepted job is trivially dispatched to
the sole machine.

Unrestricted/Immed. Notification Immediate Dispatch Immediate Decision
Randomized Deterministic Randomized Deterministic Randomized Deterministic

m LB UB LB UB LB UB LB UB LB UB LB UB

1 1.333 1.667 2 2 1.333 2
See [9] See [5] See [2, 9] See [10] See [6, 7]

2 1.263 1.5 1.5 1.333 1.667 1.667 1.333 1.8 1.8
Thm. 6 See [7, 12] See [7, 12] Thm. 3 Thm. 5 Thm. 1 See [6] See [6] See [6]

3 1.256 1.4 1.333 1.5 1.333 1.626 1.730
Thm. 6 See [7] Thm. 3 Thm. 4 See [6] See [8] See [6]

4 1.255 1.333 1.333 1.5 1.333 1.607 1.694
Thm. 6 See [7] Thm. 3 Thm. 5 See [6] See [8] See [6]

5 1.25 1.333 1.333 1.429 1.333 1.599 1.672
Thm. 6 Thm. 7 Thm. 3 Thm. 4 See [6] See [8] See [6]

6 1.252 1.3 1.333 1.444 1.333 1.594 1.657
Thm. 6 See [7] Thm. 3 Thm. 5 See [6] See [8] See [6]

7 1.251 1.294 1.333 1.4 1.333 1.591 1.647
Thm. 6 Thm. 7 Thm. 3 Thm. 4 See [6] See [8] See [6]

8 1.251 1.308 1.333 1.417 1.333 1.589 1.639
Thm. 6 Thm. 7 Thm. 3 Thm. 5 See [6] See [8] See [6]

∞ 1.25 1.25 1.333 1.333 1.333 1.582 1.582
Thm. 6 Thm. 7 Thm. 3 Thms. 4–5 See [6] See [8] See [6]

Table 1. A summary of lower and upper bounds on the achievable competitiveness for this problem. Entries in bold
are new results presented in this paper. All upper bounds apply for any p, while lower bounds generally require p ≥ 3
(some apply for p = 2 or p = 1). Blank entries have bounds that are trivially extended from a neighboring model.
For example, any upper bound with immediate decision applies to all models.

2

m: 1 2 3 4 5 6 7 8 ∞ citation
Immediate LB 1 1 1 1 1 1 1 1 1
Notification UB 1 1 1 1 1 1 1 1 1 EDF

Immediate LB 1 1.143 Thm. 10

Dispatch UB 1 1.333 1.421 1.463 1.487 1.504 1.515 1.523 1.582 Thm. 2

Immediate LB 1 1.678 1.626 1.607 1.599 1.594 1.591 1.589 1.582 See [8]

Decision UB 1 1.8 1.73 1.694 1.672 1.657 1.647 1.639 1.582 See [6]

Table 2. A summary of deterministic lower and upper bounds for the special case of unit jobs (i.e., p = 1). Entries
in bold are new results presented in this paper. We note that the upper bounds for the immediate decision model are
the same as those given in Table 1 for general p.

With randomization, Goldman et al. show that no algorithm is better than 4
3 -competitive [9].

However, no algorithm with this ratio has (yet) been found. Chrobak et al. present a 5
3 -competitive

randomized algorithm that is barely random, as it uses a single bit to choose between two deter-
ministic strategies [5]. They also prove a lower bound of 3

2 for such barely random algorithms.

For the two-machine version of the problem, Goldwasser and Pedigo [12], and independently
Ding and Zhang [7], present a 3

2 -competitive deterministic algorithm in the immediate notification
model, and a matching lower bound that applies even for the unrestricted model. Ding and Zhang
also present a deterministic lower bound for m ≥ 3 that approaches 6

5 as m → ∞.

The immediate decision model was first suggested by Ding and Zhang, and formally studied
by Ding et al. [6]. They provide an algorithm named BestFit, defined briefly as follows. Jobs
assigned to a given machine are committed to being executed in FIFO order. A newly-released
job is placed on the most heavily-loaded machine that can feasibly complete it (or rejected, if none

suffice). They prove that BestFit is 1/
(

1 − (m
m+1)m

)

-competitive for any m. This expression

equals 1.8 for m = 2 and approaches e
e−1 ≈ 1.582 as m → ∞. They show that their analysis is

tight for this algorithm, and they present a general lower bound for m = 2 and p ≥ 4, showing
that 1.8 is the best deterministic competitiveness for the immediate decision model. For m ≥ 3,
it is currently the best-known algorithm, even for the unrestricted model. Finally, they adapt the
4
3 randomized lower bound for the unrestricted, single-processor case to the immediate decision
model for m ≥ 1. In subsequent work, Ebenlendr and Sgall prove that as m → ∞, the 1.582 ratio
of BestFit is the strongest possible for deterministic algorithms in the immediate decision model,

even with unit-length jobs [8]. Specifically, they provide a lower bound of
(

e
m−1

m

)

/
(

e
m−1

m − m
m−1

)

.

Motivated by buffer management, Chin et al. consider scheduling weighted unit-length jobs to
maximize the weighted throughput [4]. They give a randomized algorithm for a single processor that
is 1.582-competitive. For multiprocessors, they give a 1/

(

1 −
(

m−1
m

)m)

-competitive deterministic
algorithm for the unrestricted model. This is precisely our bound for FirstFit in the unweighted
case with immediate dispatch, though the algorithms are not at all similar.

Although there is no previous work on maximizing throughput with immediate dispatch, Avra-
hami and Azar compare immediate dispatch to the unrestricted model for multiprocessor scheduling
to minimize flow time or completion time [1]. For these metrics, once jobs are assigned to processors,
each machine can schedule its jobs in FIFO order (and thus immediately assign time intervals).

Model and Notations. A scheduler manages m ≥ 1 machines M1, . . .Mm. Job requests arrive,
with job j specified by three nonnegative integer parameters: its release time rj , its processing time

3

pj , and its deadline dj . We assume all processing times are equal, thus pj = p for a fixed constant p.
To complete a job j, the scheduler must devote a machine to it for p consecutive time units during
the interval [rj , dj). We consider the nonpreemptive model so a running job cannot be interrupted.

The scheduler’s goal is to maximize the number of jobs that are completed on time, and we
use competitive analysis to measure the throughput of an online scheduling policy relative to the
optimal schedule for a given instance [3, 13, 15]. In an online setting, we presume that a scheduler
has no knowledge of job requests until the time at which the job is released. We do assume that
the scheduler becomes aware of all of the job’s parameters at that moment.

When several jobs have the same release time, there are two distinct models that can be studied.
In the online-list model, such jobs are handled one at a time (in an order chosen by an adversary),
with the scheduler making any required choices (e.g., immediate dispatch) for one job before learning
of the next. However, the scheduler is assumed to have been presented with all releases at time t
before having to decide what jobs to begin running at time t. In the online-time model, we assume
that the scheduler is aware of the entire set of released jobs at a given time before making decisions
about any of them. For most results in this paper, this distinction is irrelevant. Unless stated
otherwise, we present algorithms and lower bound constructions that apply in either model.

Finally, we note the important distinction between having equal-length jobs and unit-length
jobs (i.e., p = 1). With p > 1, the algorithm may start executing one job, only to learn of a new job
that is released while the first is executing. In the unit-length model, this scenario is impossible.

2 The FirstFit Algorithm

We define an algorithm FirstFit as follows. Each machine maintains a queue of jobs that have
been assigned to it but not yet completed. Let Qk(t) denote FirstFit’s queue for Mk at the
onset of time-step t (including any job that is currently executing). We define FirstFit so that it
considers each arrival independently (the online-list model). To differentiate the changing state of
the queues, we let Qj

k(t) denote the queue as it exists when job j with rj = t is considered. Note

that Qj
k(t) ⊇ Qk(t) may contain newly-accepted jobs that were considered prior to j. For a job j

arriving at time t, we dispatch it to M1 if Qj
1(t) ∪ {j} remains feasible. Otherwise, we consider

dispatching it to M2, then M3, and so on. If adding j is infeasible for each machine, it is rejected.

Unlike the BestFit algorithm for the immediate decision model [6], each machine can reorder
its queue in FirstFit. In particular, when a machine becomes available, it begins the earliest-
deadline job in its queue. Whether a job can be accepted onto a machine is also tested with the
earliest-deadline first (EDF) schedule for the current queue plus the prospective job.

In the remainder of this section, we prove two key theorems about the performance of FirstFit.
In Section 2.1, we show that FirstFit is 5

3 -competitive for equal-length jobs; this ratio is later
shown to be optimal. In Section 2.2 we show that FirstFit is 1/

(

1 −
(

m−1
m

)m)

-competitive for
the special case of unit-length jobs.

2.1 Optimal Competitiveness for Two Machines

We use an analysis style akin to that of [11, 12]. We fix a finite instance I and an optimal schedule
Opt for that instance. Our analysis of the relative performance of FirstFit versus Opt is based
upon two potential functions ΦFF and ΦOpt that measure the respective progress of the developing
schedules over time. We analyze the instance by partitioning time into consecutive regions of the

4

form [u, v) such that the increase in ΦFF during a region is guaranteed to be at least that of ΦOpt.
Starting with u = 0, we end each region with the next time v at which the set Q1(v) can be feasibly
scheduled on M1 starting at time v + p (as opposed to simply v). Such a time is well defined, as
the queue eventually becomes empty and thus trivially feasible.

Before formalizing the potential functions, we must introduce the following notations. We let
SFF(t) (resp. SOpt(t)) denote the set of jobs started strictly before time t by FirstFit (resp. Opt).
We define DFF(t) = SOpt(t)∩SFF(∞)\SFF(t) as the set of “delayed” jobs. These are started prior to
time t by Opt, yet on or after time t by FirstFit. We define DOpt(t) = SFF(t)∩SOpt(∞)\SOpt(t)
analogously. Lastly, we define a special set of “blocked” jobs for technical reasons that we will explain
shortly. Formally, we let BOpt(t) ⊆ SOpt(∞)\ (SOpt(t)∪DOpt(t)), denote those jobs that were not
started by either algorithm prior to t, but are started by Opt while FirstFit is still executing a
job of SFF(t). Based on these sets, we define our potential functions as follows:

ΦFF(t) = 5 · |SFF(t)| + 2 · |DFF(t)|
ΦOpt(t) = 3 · |SOpt(t)| + 3 · |DOpt(t)| + 2 · |BOpt(t)|

Intuitively, these functions are payments to the respective schedules for work that is done. In the
end, we will award 5 points to FirstFit for each job completed and 3 points to Opt, thus giving a
5
3 competitive ratio. However, at intermediate times we award some advance payment for accepted
jobs that are not yet started. For example, we award FirstFit with 2 points advanced credit if it
has queued a job that Opt has already started. The algorithm gets the 3 additional points when it
eventually starts that delayed job. In contrast, we immediately award Opt its full share of 3 credits
for a delayed job. We will show that there are limited opportunities for Opt to carry a job from
one region to the next as delayed, and we choose to pay for those discrepancies in advance.

The partial payment of 2 for jobs in BOpt(t) is a technical requirement related to our division of
time into regions. The way we delimit regions guarantees that jobs FirstFit starts on M1 complete
by the end of a region. However, a job FirstFit starts on M2 may execute past the region’s end.
Its could then hurt the algorithm’s performance in the next region. We account for this problem
by prepaying Opt during the analysis of the earlier region for progress made during the overhang.

Lemma 1. If FirstFit rejects job j, it keeps all machines busy throughout the period [rj , dj − p).

Proof. If some Mk were idle at a time t, its queue is empty. Yet then it is feasible to add j to
Qj

k(rj), by scheduling that queue from [rj , t) as done by the algorithm, and then running j. ⊓⊔

Lemma 2. Any job j started by FirstFit during a region [u, v) has dj < v + p, with the possible
exception of the job started by M1 at time u.

Proof. For contradiction, assume there exists j with dj ≥ v + p. When j arrived at time rj , the set

Qj
1(rj)∪{j} was feasible since, given our definition of time v, we could use the algorithm’s schedule

until time v, followed by j during [v, v + p) and Q1(v) starting at v + p. Therefore, such j must
have been assigned to M1. If j was started on M1 at time t > u, Q1(t) could be feasibly scheduled
starting at time t+p by using the algorithm’s schedule from [t+p, v), running j from [v, v+p), and
the remaining Q1(v) starting at time v + p. However, the feasibility of Q1(t) starting at time t + p
contradicts our choice of v (rather than t) as the region’s end. Therefore, no such job j exists. ⊓⊔

Lemma 3. For a region [u, v) in which M1 idles at time u for FirstFit, ΦFF(u) ≥ ΦOpt(u)
implies ΦFF(v) ≥ ΦOpt(v).

5

Proof (sketch). In this case we define v = u + 1, noting that M1 remains idle and so Q1(u + 1) = ∅
is trivially feasible. Any jobs started by Opt during the region must be ones that were previously
started by FirstFit, and so we conclude that ΦFF(v) = ΦFF(u) and ΦOpt(v) = ΦOpt(u) ⊓⊔

Lemma 4. For a region [u, v) in which M1 starts a job at time u for FirstFit, ΦFF(u) ≥ ΦOpt(u)
implies ΦFF(v) ≥ ΦOpt(v).

Proof (sketch). Let n1 ≥ 1 denote the number of jobs started by FirstFit on M1 during the
region, and n2 ≥ 0 denote the number of jobs started on M2. Note that M1 never idles during the
region, for such a time would contradict our definition of v. Therefore, v − u = p · n1. We begin by
considering possible contributions to ΦOpt(v) − ΦOpt(u), partitioned as follows:

3 · d due to d ≥ 0 jobs that are newly added to DOpt(v). Such delayed jobs must be started by
FirstFit during the region yet held by Opt for a later region. By Lemma 2, there is at most
one job started by FirstFit with expiration of v or later, thus d ≤ 1.

3 · a due to a ≥ 0 jobs that are newly added to SOpt(v), not previously credited as part of DOpt(u)
or BOpt(u), and that were accepted by FirstFit upon their release. Given that these jobs were
accepted by FirstFit and had not previously been started by Opt, they must either lie in
SFF(v) or DFF(v).

3 · r due to r ≥ 0 jobs that are newly added to SOpt(v), not previously credited as part of BOpt(u),
and that were rejected by FirstFit upon their release.

1 · bold due to bold ≥ 0 jobs that are newly added to SOpt(v) yet were previously credited as part
of BOpt(u).

2 · bnew due to bnew ≥ 0 jobs that newly qualify as blocked in BOpt(v). For such jobs to exist,
there must be a newly-started job by FirstFit on M2 whose execution extends beyond v. Since
jobs have equal length, Opt can run at most one such blocked job per machine, thus bnew ≤ 2.

Based on these notations, we have that ΦOpt(v) − ΦOpt(u) = 3(d + a + r) + bold + 2 · bnew. The
remainder of our analysis depends upon the following two inequalities that relate Opt’s progress
to that of FirstFit.

2 · n1 ≥ (a + r + bold)
By definition, the jobs denoted by a, r, and bold must be started by Opt strictly within the
range [u, v). There can be at most 2 ·n1 such jobs, given that the size of the region is known to
be v − u = p · n1 and there are two machines.

2 · n2 ≥ (r + bnew)
By definition, jobs denoted by bnew will be started by Opt at a time when FirstFit is still
completing a job from the current region. That overhanging job of FirstFit must be on M2.
Furthermore, that job of FirstFit must be one denoted within n2, for if it belongs to SFF(u),
then Opt’s job in question would belong to BOpt(u). Jobs denoted by r must be started at a
time when M2 is in use by FirstFit as per Lemma 1. Again, we rule out the possibility that
M2 for FirstFit was executing a job of SFF(u), as our definition of r excludes jobs that belong
to BOpt(u). Given that all of the r + bnew jobs of Opt start at times when FirstFit is running
one of the n2 newly-started jobs, and that at most one job of Opt can start per machine at a
time when a particular job of FirstFit is running, we conclude that (r + bnew) ≤ 2 · n2.

To complete the proof, we consider a case analysis depending on whether n1 − n2 ≥ d. If so, we
rely on additional 2(a + d) credits that can be claimed because jobs represented by a and d could

6

not have been partially credited within DFF(u). If n1 − n2 < d, it must be precisely that n1 = n2

and d = 1. Again, extra credits toward ΦFF can be claimed by a further case analysis depending
on whether n1 = 1. A detailed argument is given in the Appendix. ⊓⊔

Theorem 1. For m = 2, algorithm FirstFit is 5
3 -competitive.

Proof. Initially, ΦOpt(0) = ΦFF(0) = 0. By repeatedly applying either Lemma 3 or 4 for regions
[u, v), we conclude that ΦOpt(∞) ≤ ΦFF(∞). Since there are no more delayed jobs at infinity,

DFF(∞) = DOpt(∞) = ∅ and thus 3 · |SOpt(∞)| ≤ 5 · |SFF(∞)|, that is Opt
FF

≤ 5
3 . ⊓⊔

2.2 Unit-length Jobs

We consider a job j to be regular with respect to FirstFit if the machine to which it is dispatched
(if any) never idles during the interval [rj , dj). We consider an instance I to be regular with respect
to FirstFit if all jobs are regular.

Lemma 5. For p = 1, the worst case competitive ratio for FirstFit occurs on a regular instance.

Proof. Consider an irregular instance I, and let j on Mk be the last irregular job started by
FirstFit. Let sj denote the time at which j starts executing. The idleness of Mk leading to j’s
irregularity cannot occur while j is in the queue, so it must occur within the interval [sj + 1, dj).
We claim that for rj ≤ t ≤ sj , j ∈ Qk(t) has the largest deadline of jobs in the queue. For
the sake of contradiction, assume jobs j and j′ are in the queue at some point, for a j′ coming
after j in EDF ordering. Job j′ must also be irregular, since we know there is idleness within
interval [sj + 1, dj) ⊆ [rj′ , dj′). Since j′ starts after j by EDF, this contradicts our choice of j as
the last irregular job to be started.

We claim that FirstFit produces the exact schedule for I ′ = I − {j} as it does for I, except
replacing j by an idle slot. In essence, we argue that j’s existence never affects the treatment of
other jobs. Since j always has a deadline that is at least one greater than the cardinality of Qk

while in the queue, it cannot adversely affect a feasibility test when considering the dispatch of
another job to Mk. Also, since j has the largest deadline while in Qk, its omission does not affect
the choice of jobs that are started, other than by the time sj when it is the EDF job, and therefore
Qk(sj) = {j}. There are no other jobs to place in the time slot previously used for j.

To conclude, since FirstFit completes one less job on I ′ than I, and Opt loses at most one
job, the competitive ratio on I ′ is at least as great as on I. ⊓⊔

Theorem 2. For p = 1, algorithm FirstFit is
1

1 −
(

m−1
m

)m -competitive.

Proof. By Lemma 5, we can prove the competitiveness of FirstFit by analyzing an arbitrary
regular instance. We rely on a charging scheme inspired by the analysis of BestFit in the immediate
decision model [6], but with a different sequence of charges. We define Yk = (m − 1)m−k · mk−1

for 1 ≤ k ≤ m. We note that
∑m

k=1 Yk = mm − (m − 1)m is a geometric sum with the common
ratio m

m−1 . A job i started at time t by Opt will distribute mm − (m − 1)m units of charge by
assigning Y1, Y2, . . . Yk respectively to the jobs j1, j2, . . . , jk run by FirstFit at time t on machines
M1, M2, . . . , Mk for some k. When k < m, the remaining charge of

∑m
z=k+1 Yz is assigned to i itself;

this is well-defined, as i must have been accepted by FirstFit given that there is an idle machine
at time t when i is feasible.

7

We complete our proof by showing that each job j run by FirstFit collects at most mm units of
charge, thereby proving the competitiveness of mm

mm−(m−1)m = 1
1−(m−1

m)
m . Consider a job j that is run

by FirstFit on Mk. By our definition of regularity, machine Mk (and hence machines M1 through
Mk−1 by definition of FirstFit) must be busy at a time when Opt starts j. Therefore, j receives
at most

∑m
z=k+1 Yz units of supplemental charge from itself. In addition, j may collect up to m ·Yk

from the jobs that Opt runs at the time FirstFit runs j. So j collects at most m·Yk+
∑m

z=k+1 Yz =
(m−1)·Yk+

∑m
z=k Yz. We prove by induction on k that (m−1)·Yk+

∑m
z=k Yz = (m−1)·Y1+

∑m
z=1 Yz.

This is trivially so for k = 1. For k > 1, (m− 1) ·Yk = (m− 1)m−(k−1) ·mk−1 = m ·Yk−1. Therefore
(m−1)·Yk +

∑m
z=k Yz = m·Yk−1+

∑m
z=k Yz = (m−1)·Yk−1+

∑m
z=k−1 Yk, which by induction equals

(m−1) ·Y1 +
∑m

z=1 Yz. Finally, we note that (m−1) ·Y1 = (m−1)m and
∑m

z=1 Yz = mm− (m−1)m

so therefore each job j run by FirstFit collects at most mm units of charge. ⊓⊔

We note that our analysis of FirstFit is tight, as demonstrated by the following instance.
Consider m + 1 “waves” of jobs. For 1 ≤ w ≤ m, wave w is m · Ym+1−w jobs with release
time

∑w−1
z=1 Ym+1−z and deadline mm. The final wave is m · (m− 1)m jobs with release time mm −

(m − 1)m and deadline mm. FirstFit assigns the first wave to M1, the second to M2, and so on.
Each wave uses its machine until time mm. Thus FirstFit must reject the final m(m − 1)m jobs
and runs a total of m ·

∑m
k=1 Yk = m(mm−(m−1)m) jobs. In contrast, Opt can run all m ·mm jobs

by distributing each wave across all m machines. This leads to a competitive ratio of mm

mm−(m−1)m .

3 Lower Bounds

In this section, we provide lower bounds on the competitiveness of randomized and deterministic
algorithms for the immediate dispatch model, the unrestricted model, and the special case of m = 2
and p = 1. In our constructions, we use the notation 〈rj , dj〉 to denote a job with release time rj

and deadline dj . Goldman et al. provide a prototypical 4
3 -competitive lower bound for randomized

algorithms on a single machine in the unrestricted model [9]. While that construction cannot be
directly applied to the multiple machine case in the unrestricted model, Ding et al. use such a
construction in the immediate decision model to provide a randomized lower bound of 4

3 for any
number of machines [6]. We show this lower bound applies to the immediate dispatch model as well.

Theorem 3. For the immediate dispatch model with p ≥ 2, a randomized algorithm cannot have
competitiveness strictly better than 4

3 against an oblivious adversary.

Proof. Formally, we prove a lower bound on the randomized competitiveness by applying Yao’s
principle [3, 16] and bounding the expected value of a deterministic algorithm against the follow-
ing random distribution. We consider two instances. Both begin with m jobs having parameters
〈0, 2p + 1〉. For a fixed deterministic algorithm, we let α denote the number of machines that have
been assigned two jobs from the first group or one job that it chose to start at time 0.

Our first instance continues with m jobs having parameters 〈p, 2p〉. The m − α machines that
did not have two initial jobs assigned nor start an initial job at time 0 are able to run at most one
job each. Combining that with at most 2 jobs for each of the other α machines, the online algorithm
runs at most 2 ·α + (m−α) = m + α jobs, for a competitive ratio of at least 2m

m+α
on this instance.

Our second instance continues with m jobs having parameters 〈1, p + 1〉. At least α of the second
wave of jobs must be rejected, since none can be scheduled on the α machines that are otherwise
committed. This leads to a competitive ratio of at least 2m

2m−α
against the second instance.

8

For a uniform random distribution over these two instances, a deterministic algorithm has ex-

pected competitive ratio at least 1
2

(

2m
m+α

+ 2m
2m−α

)

. This is minimized at 4
3 when α = m

2 . Therefore,

any randomized algorithm is at best 4
3 -competitive against an oblivious adversary. ⊓⊔

We now prove slightly stronger bounds for deterministic algorithms. In Theorem 4, we exploit
that an algorithm cannot precisely choose α = m

2 when m is odd. In Theorem 5, we give a job with
large deadline and, once the algorithm starts it, overlay a construction similar to above.

Theorem 4. For the immediate dispatch model with p ≥ 2 and m odd, a deterministic algorithm
cannot have competitiveness strictly better than 4m

3m−1 .

Proof (sketch). We consider the same two instances as in the proof of Theorem 3, for which a
deterministic algorithm has a competitive ratio of at least max(2m

m+α
, 2m

m−α
). For odd m, this is

minimized with α = ⌊m
2 ⌋ = m−1

2 or ⌈m
2 ⌉ = m+1

2 . In either case, the competitive ratio is lower
bounded by max(4m

3m−1 , 4m
3m+1) = 4m

3m−1 . ⊓⊔

Theorem 5. For the immediate dispatch model with p ≥ 3 and m even, a deterministic algorithm
cannot have competitiveness strictly better than 4m+2

3m
.

Proof. Our adversary begins by presenting a single job with parameter 〈0, 4p + 1〉. For an arbitrary
deterministic algorithm, let t be the time at which this job is started if no other jobs were to arrive.
We next introduce a set of m identical jobs with parameters 〈t + 1, t + 2p + 2〉. Let α denote the
number of machines at time t + 1 that are either running a job or have two jobs already assigned.
Our adversary will present one of two possible continuations.

In the first, a set of m additional jobs are released with parameters 〈t + p + 1, t + 2p + 1〉. Opt

runs all 1 + 2m jobs, while the algorithm gets at most m + α, running at most 2 jobs on the α
machines and at most 1 on the others. Our second instance begins with the same 1+m jobs as the
first. It continues with m jobs with parameters 〈t + 2, t + p + 2〉. Again, Opt runs 1+2m jobs, but
now the algorithm gets at most 1 + 2m−α since it has to reject at least α of the final batch, given
the α machines with conflicting commitments. For fixed α, an adversary chooses the worst of these
for a lower bound of max(1+2m

m+α
, 1+2m

1+2m−α
). This is minimized at 4m+2

3m
when α = ⌊1+m

2 ⌋ = m
2 . ⊓⊔

Although the 4
3 -competitive lower bound construction for the single-machine case has been

adapted to the multiple machine case in the immediate decision and immediate dispatch models,
it does not directly apply to the less restrictive model of immediate notification or the original
unrestricted model. If facing the construction used in Theorem 3, an optimal deterministic algo-
rithm could accept the initial m jobs with parameters 〈0, 2p + 1〉, starting m

3 of them at time 0 and
centrally queuing the other 2m

3 . If at time 1 it faces the arrival of m additional jobs with parame-
ters 〈1, p + 1〉, it can accept 2m

3 of them on idle machines, while still completing the remaining initial
jobs at time p + 1 on those machines. The competitive ratio in this setting is 2m/(m + 2m

3) = 6
5 .

If no jobs arrive by time 1 for the given adversarial construction, it can commit another m
3 of the

machines to run initial jobs from [1, p + 1), with the final third of the initial jobs slated on those
same machines from [p+1, 2p+1). In that way, it retains room for 2m

3 jobs in a second wave during
the interval [p, 2p], by using the idle machines and the first third of the machines that will have
completed their initial job, again leading to a competitive ratio of 6

5 . Ding and Zhang [7] provide
a slightly stronger deterministic bound for fixed values of m, by releasing a single initial job with
larger deadline, followed by the classic construction (akin to our construction from Theorem 5).

9

In our next series of results, we give a new construction that strengthens the randomized and
deterministic lower bounds for these models, showing that competitiveness better than 5

4 is impos-
sible in general. By increasing the number of jobs in the second wave of one of the instances to 2m
jobs from m, we reduce the “flexibility benefit” from leaving machines idle at time 0. This changes
the balancing point between the instances and increases the competitive ratio.

Theorem 6. For the unrestricted model with p ≥ 2, a randomized algorithm cannot have compet-
itiveness strictly better than the following:

m mod 5 0 1 2 3 4

competitive ratio 5
4

20m2

16m2−1
30m2

24m2−1
30m2

24m2−1
20m2

16m2−1

Proof (sketch). We apply Yao’s principle with a distribution of two possible instances. Both in-
stances begin with m jobs with parameters 〈0, 2p + 1〉. In analyzing a particular deterministic
algorithm, we let α denote the number of machines that begin running a job at time 0.

Our first instance continues with 2m jobs having parameters 〈p, 3p〉. Opt runs all 3m jobs
by scheduling the initial batch of jobs from [0, p) and the final batch from [p, 3p). For the online
algorithm, a machine that does not starting a job at time 0 can run at most 2 jobs. Therefore, it
runs at most 3α + 2 · (m − α) = 2m + α jobs, for a competitive ratio of at most 3m

2m+α
on this

instance. Our second instance continues with m jobs with parameters 〈1, p + 1〉. Opt runs all 2m
jobs by scheduling the second batch of jobs from [1, p+1) and the initial batch from [p+1, 2p+1).
In contrast, the online algorithm runs at most 2m−α jobs, as it must reject α of the jobs arriving
at time 1. Thus, its competitive ratio is at most 2m

2m−α
on this instance.

For m ≡ 0 (mod 5), we select the first instance with probability 1
2 . The expected competitive

ratio of a deterministic algorithm for this distribution is at most 1
2

(

3m
2m+α

+ 2m
2m−α

)

. This expression

is minimized at 5
4 by an algorithm choosing α = 2m

5 . Since all deterministic algorithms have
expected competitiveness at least 5

4 against this distribution, any randomized algorithm is at best
5
4 -competitive against an oblivious adversary. For other modularities of m, an even stronger bound
holds because the algorithm cannot choose α = 2m

5 . The details are deferred to the Appendix. ⊓⊔

Our next theorem strengthens the bound for deterministic algorithms by first releasing a single
job with large deadline (as we did with Theorem 5 for the immediate assignment model).

Theorem 7. For the unrestricted model with p ≥ 3, a deterministic algorithm cannot have com-
petitiveness strictly better than the following:

m mod 5 0 1 2 3 4

competitive ratio 5
4

(

1 + 1
3m

)

5
4

(

1 + 1
(4m+1)

)

5
4

(

1 + 3
(12m+1)

)

5
4

(

1 + 3
(8m+1)

)

5
4

(

1 + 1
(4m−1)

)

Proof (sketch). Our adversary begins by presenting a single job with parameter 〈0, 5p − 1〉. For an
arbitrary deterministic algorithm, let t be when the job is started if no others arrive. Next, a set of
m′ identical jobs with parameters 〈t + 1, t + 2p + 2〉 arrive, where m′ = m−1 if m = 4 (mod 5) and
m′ = m otherwise. Let α denote the number of jobs (including the original job) started by the online
algorithm on or before time t + 1. Our adversary presents one of two possible continuations. In the
first, a set of 2m new jobs with parameters 〈t + p + 1, t + 3p + 1〉 are released, giving a competitive

10

ratio of at least 1+m′+2m
2m+α

. In the second, m new jobs with parameters 〈t + 2, t + p + 2〉 arrive,

giving a competitive ratio of at least 1+m′+m
1+m′+m−α

. The precise lower bounds come from analyzing
the optimal choice of α for varying values of m; we defer details to the Appendix. ⊓⊔

The construction of Theorem 7 requires p ≥ 3, in order to leverage the introduction of the initial
job 〈0, 5p − 1〉. For p = 2, we provide slightly weaker bounds as follows.

Theorem 8. For the unrestricted model with p = 2, a deterministic algorithm cannot have com-
petitiveness strictly better than the following:

m mod 5 1 2 3 4

competitive ratio 15m
12m−2

10m
8m−1

15m
12m−1

5m
4m−1

Proof. Construction from Theorem 6, with deterministic algorithm choosing α as ⌊2m
5 ⌋ or ⌈2m

5 ⌉. ⊓⊔

Finally, we focus on the special case of p = 1 and m = 2. Our analysis in Section 2.2 shows that
FirstFit is precisely 4

3 -competitive in this setting. However, the 4
3 lower bounds from the previous

theorems do not apply with p = 1; an adversary cannot force the rejection of new jobs due to
machines that are committed to other tasks. With the following theorems, we provide alternative
lower bounds (albeit, weaker) for the unit-length job, drawing a distinction between the online-time
and online-list models, as defined in the introduction.

Theorem 9. For the immediate dispatch model with p = 1 and m = 2, a deterministic online-time
algorithm cannot have a constant competitiveness ratio strictly better than 9/8.

Proof. We first prove that the competitive ratio is at least 10/9 and then show how to repeat part
of the instance to give the claimed bound. For the 10/9 bound, the instance begins with five jobs:
two jobs with parameters 〈0, 1〉, A = 〈0, 2〉, B = 〈0, 3〉, and C = 〈0, 5〉. To be competitive, the
algorithm must accept all five jobs, dispatching a 〈0, 1〉 job to each machine and, without loss of
generality, job A to M1. We have the following cases:

Case 1: B assigned to M1: Two jobs 〈2, 3〉 arrive. The algorithm cannot accept them both since
M1 is busy with A and B; Opt runs A and B at time 1, the 〈2, 3〉 jobs at time 2, and C at
time 3. Competitive ratio is at best 7/6.

Case 2: B and C assigned to M2: A job 〈1, 2〉 and four jobs 〈3, 5〉 arrive. The algorithm can
accept at most four of those five, achieving at most 9 of 10. Opt runs all, with A and the 〈1, 2〉
job at time 1, B and C at time 2, and the four 〈3, 5〉 jobs starting at time 3.

Case 3: C assigned to M1, B assigned to M2: A job 〈1, 2〉 and job D = 〈1, 4〉 arrive. To be
competitive, the algorithm must accept both, starting A and the 〈1, 2〉 job at time 1. At time 2,
jobs B, C, and D remain. Job B must start immediately. We have one of the following:

Case 3a: D assigned to M1: A job 〈2, 3〉 and two jobs 〈4, 5〉 arrive. The algorithm is unable
to accept all ten jobs. With B on M2, the new 〈2, 3〉 job must run on M1. Yet then C and
D occupy M1 until time 5, and one of the 〈4, 5〉 jobs is rejected. Opt can run A and 〈1, 2〉
at time 1, B and 〈2, 3〉 at time 2, C and D at time 3, and the two 〈4, 5〉 jobs at time 4.

Case 3b: D assigned to M2: Two jobs 〈3, 4〉 arrive. The algorithm cannot accept both since
M2 must run B and D by time 4. Opt can run A and 〈1, 2〉 at time 1, B and D at time 2,
the two 〈3, 4〉 jobs at time 3, and C at time 4.

11

The lowest ratios come from cases 2 and 3a, with 9 of 10 jobs accepted. At time 4 in those cases,
both machines are running jobs with deadline 5. Then we repeat the construction using those jobs
in place of the pair 〈0, 1〉. That is, we release A2 = 〈4, 6〉, B2 = 〈4, 7〉, C2 = 〈4, 9〉, and D2 = 〈5, 8〉
(if needed) to force at least 2 rejections of out of at most 18 jobs, for a bound of 18/16 = 9/8. ⊓⊔

Theorem 10. For the immediate dispatch model with p = 1 and m = 2, a deterministic online-list
algorithm cannot have competitiveness strictly better than 8/7.

4 Conclusions

The main contribution of this paper has been the introduction of the immediate dispatch model for
the problem of maximizing throughput with equal-length jobs. We demonstrate that this model is
strictly more difficult than the immediate notification model, and strictly easier than the immediate
decision model. We hope that an understanding of these models may help in settling the primary
open problem in this area, namely to develop stronger algorithms for m ≥ 3 in any of these models.

References

1. N. Avrahami and Y. Azar. Minimizing total flow time and total completion time with immediate dispatching.
Algorithmica, 47(3):253–268, 2007.

2. S. K. Baruah, J. R. Haritsa, and N. Sharma. On-line scheduling to maximize task completions. J. Combin. Math.
and Combin. Computing, 39:65–78, 2001.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, New
York, 1998.

4. F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, and T. Tichý. Online competitive algorithms for
maximizing weighted throughput of unit jobs. J. Discrete Algorithms, 4(2):255–276, 2006.

5. M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Online scheduling of equal-length jobs: Randomization and
restarts help. SIAM J. Comput., 36(6):1709–1728, 2007.

6. J. Ding, T. Ebenlendr, J. Sgall, and G. Zhang. Online scheduling of equal-length jobs on parallel machines. In
L. Arge and M. Hoffmann, editors, Proc. 15th European Symp. on Algorithms (ESA), volume 4698 of Lecture
Notes in Computer Science, pages 427–438, Eilat, Israel, Oct. 2007. Springer-Verlag.

7. J. Ding and G. Zhang. Online scheduling with hard deadlines on parallel machines. In Proc. Second Int.
Conference on Algorithmic Aspects in Information and Management, volume 4041 of Lecture Notes in Computer
Science, pages 32–42, Hong Kong, China, June 2006. Springer-Verlag.

8. T. Ebenlendr and J. Sgall. A lower bound for scheduling of unit jobs with immediate decision on parallel machines.
In E. Bampis and M. Skutella, editors, Proc. Sixth Workshop on Approximation and Online Algorithms (WAOA),
Lecture Notes in Computer Science, pages 43–52, Germany, Sept. 2008. Springer-Verlag.

9. S. Goldman, J. Parwatikar, and S. Suri. On-line scheduling with hard deadlines. J. Algorithms, 34(2):370–389,
Feb. 2000.

10. M. H. Goldwasser and B. Kerbikov. Admission control with immediate notification. J. Scheduling, 6(3):269–285,
May/June 2003.

11. M. H. Goldwasser and A. B. Misra. A simpler competitive analysis for scheduling equal-length jobs on one
machine with restarts. Information Processing Letters, 107(6):240–245, Aug. 2008.

12. M. H. Goldwasser and M. Pedigo. Online nonpreemptive scheduling of equal-length jobs on two identical machines.
ACM Trans. on Algorithms, 5(1), Nov. 2008.

13. A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy paging. Algorithmica, 3(1):70–119,
1988.

14. K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perform. Eval. Rev., 34(4):52–58,
2007.

15. D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Commun. ACM, 28:202–208,
1985.

16. A. C.-C. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc. 18th Symp. on
Foundations of Computer Science (FOCS), pages 222–227, Providence, Rhode Island, Oct. 31–Nov. 2, 1977.

12

A Omitted proofs

Proof (of Lemma 3). For M1 to be idle at time u, its queue must be empty. Furthermore, there
must not be any new arrivals at time u. In this case, v = u + 1, as Q1(u + 1) remains empty (as
it does not include jobs released at u + 1) and thus trivially feasible. The second machine may
still be processing a job that started at an earlier time, but other than that job, its queue must be
empty as well. This is because any job that could feasibly be started after time t would have been
assigned to M1, given its idleness at time u. As no jobs are started by FirstFit during the region,
SFF(v) = SFF(u), and since the algorithm’s queues do not contain any jobs with expiration on or
after u, DFF(v) = DFF(u) = ∅. We conclude that ΦFF(v) = ΦFF(u).

Because FirstFit does not start any new jobs during the region, it is impossible for Opt to get
credit for any newly-delayed or newly-blocked jobs. The only other potential contribution toward
ΦOpt during this region would be from jobs that Opt starts. However, any job that Opt starts
during this region must already lie in DOpt(u), and thus be credited in ΦOpt(u). This is so because
a job j started by Opt satisfies rj ≤ u ≤ dj − p. By Lemma 1, it must have been accepted by
FirstFit. Since there are no jobs with such an expiration in the algorithm’s queues, it must have
been started strictly before u and thus in DOpt(u). We conclude that ΦOpt(v) = ΦOpt(u). ⊓⊔

Proof (continuation of Lemma 4). We show that ΦFF(v)− ΦFF(u) ≥ ΦOpt(v)− ΦOpt(u), and thus
that ΦFF(u) ≥ ΦOpt(u) implies ΦFF(v) ≥ ΦOpt(v). We consider two possible cases, the first of which
is when n1−n2−d ≥ 0. We begin by noting that every job started by FirstFit accounts for at least
3 units of credit toward ΦFF, as it is newly added to SFF(v), yet possibly credited within DFF(u).
We claim an additional 2(a + d) units of credit toward ΦFF. Notice that each of the jobs denoted
by a and d have been accepted by FirstFit yet not started prior to u. These jobs could not have
been partially credited within DFF(u), as that would imply containment in SOpt(u), contradicting
the definition of a and d. Therefore each of these jobs either becomes newly delayed by FirstFit,
thus contributing 2 as a member of DFF(v), or is in SFF(v) \DFF(u) and thus contributes a full 5
units rather than our previously assumed net gain of 3. Therefore, we deduce the following.

ΦFF(v) − ΦFF(u) ≥ 3(n1 + n2) + 2(a + d)

= 3(n1 + n2) + 2(a + d + r) − 2(r + bnew) + 2 · bnew

≥ 3(n1 + n2) + 2(a + d + r) − 4 · n2 + 2 · bnew as 2 · n2 ≥ (r + bnew)

= 2 · n1 + (n1 − n2) + 2(a + d + r) + 2 · bnew

≥ (a + r + bold) + (n1 − n2) + 2(a + d + r) + 2 · bnew as 2 · n1 ≥ (a + r + bold)

= 3(a + d + r) − d + bold + (n1 − n2) + 2 · bnew

≥ 3(a + d + r) + bold + 2 · bnew assuming n1 − n2 − d ≥ 0

= ΦOpt(v) − ΦOpt(u)

It remains to discuss the case when n1−n2−d < 0. Given that n1 ≥ n2 and d ≤ 1, this inequality
implies that n1 = n2 and d = 1. We begin by considering the first job executed by FirstFit on M1

(that contributing to d = 1 for Opt). Since this job is delayed by Opt it cannot belong to DFF(u)
and therefore contributes a new credit of 5 toward ΦFF rather than 3. Furthermore, Opt’s delay
of the job denoted by d ensures that its deadline is at least v + p. By Lemma 2, all other jobs run
by FirstFit in the region have deadline strictly before v + p. Had any of those jobs been released
or or before u, they would have been feasible to dispatched to M1 and, given the EDF scheduling

13

policy, they would have been started rather than the job denoted by d. Therefore, all jobs started
by FirstFit during this region, were released at time u or later and cannot belong to DFF(u). As
a result, each contributes 5 credits and ΦFF(v) − ΦFF(u) ≥ 5(n1 + n2) = 10 · n1, as n1 = n2.

We conclude by considering two further subcases. First, we consider when n1 ≥ 2. In this case,
we trivially have that 4 · n1 > 3 · d + 2 · bnew as d = 1 and bnew ≤ 2. With that inequality, we see

ΦFF(v) − ΦFF(u) ≥ 10 · n1

≥ 3(a + r + bold) + 4 · n1 as 6 · n1 ≥ 3 · (a + r + bold)

= 3(a + r + d) + 3 · bold − 3 · d + 4 · n1

≥ 3(a + r + d) + bold − 3 · d + 4 · n1

> 3(a + r + d) + bold + 2 · bnew as 4 · n1 − 3 · d > 2 · bnew

= ΦOpt(v) − ΦOpt(u)

The final scenario is when n1 = n2 = d = 1. In this case, the algorithm starts one job, denoted
as j, on M1 at time u and another job, denoted as k, on M2 at some time u ≤ t < v. By our earlier
argument, ΦFF(v)−ΦFF(u) ≥ 5(n1 +n2) = 10. In contrast, we consider contributions toward ΦOpt.
The delayed job j results in 3 units of credit for Opt. This leaves us with a net surplus of 7 units in
favor of FirstFit thus far in our analysis. All remaining credits towards ΦOpt must be due to jobs
started by Opt either during this region or blocked by k’s overhang into [v, t + p). If Opt started
only one job per machine in this analysis, it would receive at most 3 additional credits for each, and
therefore ΦOpt(v) − ΦOpt(u) ≤ 9 < 10 = ΦFF(v) − ΦFF(u). For Opt to get credit for two different
jobs on the same machine, it must start one job during [u, t) and the other during [v, t + p). The
latter of those two will only be credited 2 towards ΦOpt as a new member of BOpt(v) (note that
k cannot itself be held as delayed by Opt given that it expires strictly before v). If a job started
by Opt during [u, t) were a member of BOpt(u), it would only produce a net gain of 1 which,
combined with the latter job’s 2, nets Opt with only 3 due to work on that machine.

To surpass a gain of 3 per machine, Opt must receive credit for starting a non-blocked job
during the range [u, t). That would produce a gain on that machine of 5 (with 3 for the first job
and 2 for the second). A non-blocked job started by Opt during [u, t) must start after FirstFit

completes any jobs hanging from SFF(u) on M2, yet before FirstFit starts k. M2 is idle during
such an interim, so Lemma 1 implies that the job started by Opt is accepted by FirstFit. Since
Opt receives new credit for the job, it was not previously scheduled by FirstFit. Furthermore,
that job cannot be k itself, because if k had already been released and assigned to M2 by FirstFit,
that machine would not be idle. Therefore, the job in question that produces additional gain for
Opt must be newly added to DFF(v). This results in an additional gain of 2 toward ΦFF, beyond
the 10 we have previously described. This counteracts the fact that Opt received a gain of 5 rather
than 3, and so we have that ΦOpt(v) − ΦOpt(u) = 11 and ΦFF(v) − ΦFF(u) = 12. If Opt were to
do the same on both machines, we have that ΦOpt(v) − ΦOpt(u) = 13 yet ΦFF(v) − ΦFF(u) = 14.
In all cases, we conclude that ΦOpt(v) − ΦOpt(u) ≤ ΦFF(v) − ΦFF(u). ⊓⊔

Proof (continuation of Theorem 6). We finish by addressing cases with m 6≡ 0 (mod 5). Rather
than picking between the two instances with equal probability, we skew the distribution. We choose
the first of the two instances with a probability denoted as β, to be determined. The expected
competitiveness of a deterministic algorithm is β · 3m

2m+α
+ (1 − β) · 2m

2m−α
. We conclude our proof

with a case analysis, choosing β as follows.

14

m mod 5 ⌊α⌋ ⌈α⌉ β bound on competitiveness

1 2m−2
5

2m+3
5

2(6m−1)
5(4m−1)

20m2

16m2−1

2 2m−4
5

2m+1
5

2(12m+1)(3m−1)
5(24m2−1)

30m2

24m2−1

3 2m−1
5

2m+4
5

2(12m−1)(3m+1)
5(24m2−1)

30m2

24m2−1

4 2m−3
5

2m+2
5

2(6m+1)
5(4m+1)

20m2

16m2−1

⊓⊔

Proof (Theorem 7). Consider an arbitrary online, deterministic algorithm. Our adversary begins
by presenting a single job with parameter 〈0, 5p − 1〉. If this were the only job in the instance, the
algorithm must accept this job in order to have a bounded competitive ratio. Let t be the time at
which the job is started if no other jobs were to arrive. We next introduce a set of m′ identical jobs
with parameters 〈t + 1, t + 2p + 2〉, where m′ = m−1 if m = 4 (mod 5) and m′ = m otherwise. Let
α denote the number of jobs (including the original job) that are started by the online algorithm
on or before time t + 1. Our adversary will present one of two possible continuations.

In the first, a set of 2m new jobs with parameters 〈t + p + 1, t + 3p + 1〉 are released. Opt

achieves all jobs by scheduling the intermediate batch of m′ jobs during the region [t+1, t+ p+1),
the final batch of 2m jobs during the region [t + p + 1, t + 3p + 1), and the original job either from
[0, p) if t ≥ p − 1, or [t + 3p + 1, t + 4p + 1) if t ≤ p − 2. We claim that the online algorithm can
achieve at most 2m + α jobs, for a competitive ratio of at least LB1(m, α) = 1+m′+2m

2m+α
. With the

exception of that first job started by the algorithm at time t, all jobs arrive on or after t + 1 and
have a deadline of at most t + 3p + 1. The algorithm can achieve at most three jobs per machine,
and even that requires the machine to start a job on or before time t + 1. So the algorithm can
achieve at most 3 · α + 2 · (m − α) = 2m + α jobs.

Our second instance begins with the same 1+m′ jobs as does the first. It continues with m new
jobs having parameters 〈t + 2, t + p + 2〉. Opt achieves all jobs by scheduling the last batch of jobs
during the region [t+2, t+p+2, the intermediate batch of jobs during the region [t+p+2, t+2p+2),
and the original job either from [0, p) if t ≥ p − 1 or else from [t + 2p + 2, t + 3p + 2) if t ≤ p − 2.
The online algorithm must reject at least α of the final batch of jobs, since the machines started
at times t or t + 1 will still be busy at t + 2. Therefore, the online algorithm achieve at most
(1 + m′ + m−α) jobs, for a competitive ratio of at least LB2(m, α) = 1+m′+m

1+m′+m−α
on this instance.

Consider a fixed m. The algorithm can choose the value of α, in which case our adversary can
select the worse of the the two lower bounds, leading to an algorithm with competitive ratio at
least r(m, α) = max(LB1(m, α), LB2(m, α)). We can therefore bound the competitiveness of any
deterministic algorithm with the expression

r(m) = min
1≤α≤m

α∈Z

r(m, α)

We let α∗ denote that α that minimizes r(m, α) if we were to relax the constraint to allow nonintegral
α. Since LB1(m, α) is strictly decreasing as α increases and LB2(m, α) is strictly increasing as
α increases, the integral value of α that minimizes r(m, α) must either be ⌊α∗⌋, in which case
r(m) = LB1(m, ⌊α∗⌋), or ⌈α∗⌉, in which case r(m) = LB2(m, ⌈α∗⌉).

15

We first consider when m ≡ 4 (mod 5) and thus m′ = m − 1. In this case, the arithmetic
simplifies to LB1(m, α) = 3m

2m+α
, LB2(m, α) = 2m

2m−α
, and we have that α∗ = 2m

5 . By examination,

r(m) is achieved by ⌈α∗⌉ = 2(m+1)
5 , in which case r(m) = LB2(m, 2(m+1)/5) = 5m

4m−1 . When m 6≡ 4

(mod 5) we have that m′ = m, LB1(m, α) = 3m+1
2m+α

, and LB2(m, α) = 2m+1
2m+1−α

. In this case, we get
that

α∗ =
(2m + 1)(m + 1)

5m + 2
=

2m

5
+

11

25
+

3

25(5m + 2)
.

The sum of the first two terms will always be a nonintegral multiple of 1
25 . The final term is

guaranteed to be strictly less than 1
25 and so it does not affect ⌊α∗⌋ or ⌈α∗⌉. By examination, the

bounds stated in the theorem are achieved with

r(m) = LB1(m, ⌊α∗⌋) = LB1(m, 2m/5) for m ≡ 0 (mod 5)
r(m) = LB2(m, ⌈α∗⌉) = LB2(m, (2m + 3)/5) for m ≡ 1 (mod 5)
r(m) = LB1(m, ⌊α∗⌋) = LB1(m, (2m + 1)/5) for m ≡ 2 (mod 5)
r(m) = LB2(m, ⌈α∗⌉) = LB2(m, (2m + 4)/5) for m ≡ 3 (mod 5)

⊓⊔

Proof (Theorem 10). The instance begins with 3 jobs: A = 〈0, 1〉, B = 〈0, 2〉, and C = 〈0, 4〉. We
assume, w.l.o.g., that job A is assigned to M1. We have the following cases:

Case 1: B is assigned to M1: Two jobs 〈1, 2〉 arrive. The algorithm cannot accept them both
since M1 is busy with A and B. Opt runs A and B at time 0, the 〈1, 2〉 jobs at time 1, and C
at time 2.

Case 2: B and C assigned to M2: A job 〈0, 1〉 and four jobs 〈2, 4〉 arrive. The algorithm only
gets three of the 〈2, 4〉 jobs. Opt can run A and the 〈1, 2〉 job at time 0, B and C at time 1,
and the four other jobs starting at time 2.

Case 3: C assigned to M1, B assigned to M2: A job 〈0, 1〉 and job D = 〈1, 3〉 arrive. To re-
main competitive, the algorithm must accept both, starting A and the 〈0, 1〉 job at time 0. At
time 1, jobs B, C, and D remain, with B needing to start immediately. Depending on where
job D was assigned, we have one of the following:

Case 3a: D assigned to M1: A job 〈1, 2〉 and two jobs 〈3, 4〉 arrive. The algorithm will be
unable to achieve all eight jobs. With B on M2, the 〈1, 2〉 must be run on M1. Yet then C
and D will consume M1 until time 4, and one of the 〈3, 4〉 jobs is rejected. Opt can run A
and 〈0, 1〉 at time 0, B and 〈1, 2〉 at time 1, C and D at time 2, and the two 〈3, 4〉 jobs at
time 3.

Case 3b: D assigned to M2. Two jobs 〈2, 3〉 arrive. The algorithm cannot accept both since
M2 must run B and D by time 3. Opt can run A and 〈0, 1〉 at time 0, B and D at time 1,
the two 〈2, 3〉 jobs at time 2, and C at time 3.

The lowest ratios come from cases 2 and 3a, with the algorithm running at most 7 of the 8 jobs. ⊓⊔

16

