
Statistical language
processing (and Perl)

Kevin Scannell
Saint Louis University

January 21, 2009

What is Natural Language
Processing?

● Defined here primarily in terms of end-user
applications, for example:

● Spelling and grammar checking
● Search, information retrieval, question-

answering
● Summarization, abstracting
● Speech recognition, synthesis
● Machine translation, translators' aids
● ... but also all of the linguistic elements that

feed into these applications (morphology,
POS tagging, parsing, semantics, word sense
disambiguation)

Why is NLP hard?

● Natural languages are ambiguous at many
levels

● Lexical categories: “time flies like an arrow”
(Marx)

● Lexical semantics: “the pen is in the box”,
“the box is in the pen” (Bar-Hillel, 1960)

● Syntax: “I watched a movie with Kevin
Scannell”, “I watched a movie with Kevin
Costner” (PP attachment)

● Syntax: “old men and women” (coordination
ambig.)

● Speech: waveform and several possible
“decodings”

Rule-based approaches

● The classical approach to resolving
ambiguities was to construct sets of rules
based on contextual clues

● e.g. POS tagging. If a word could be a noun
or a verb (“work”, “type”, “drive” +
thousands more), one rule might tag it as a
noun if the preceding word is an article. Or
if the preceding word is “can” or “should”,
tag it as a verb. And so on.

● Many rules required. Many exceptions and
exceptions to exceptions. Labor intensive.
Hard to maintain.

Statistical approaches

● Basic setup: imagine there is an ambiguity
(of any of the types mentioned) that can be
resolved in one of two ways, A or B (think
POS tags or word senses)

● If we could compute the conditional
probabilities P(A | context) and P(B | context),
we could choose A or B based on which has a
higher probability. “context” often means
the surrounding words or POS tags

● Could try and estimate these probabilities by
looking in a big corpus of texts, but given
contexts usually don't recur enough for this
to be realistic.

One Trick Pony: Bayes'
Law

● P(A | context) = P(context | A)P(A)/P(context)
● P(B | context) = P(context | B)P(B)/P(context)
● P(context) is the same for A and B, so ignore
● If the context is made up of several

“features” (e.g. The three preceding words
x,y,z), assume independence so P(context |
A) = P(x | A)P(y | A)P(z | A) and similarly for
P(context | B).

● So now you can hopefully compute all these
terms from a corpus: P(A), P(B), P(x | A), ...

● e.g. “mouse”, A=computer sense,
B=zoological sense, and terms like P(optical |
A) or P(field | B) will dominate

Problems with statistics

● Need large corpora for training, and
according to the description I've given the
corpora need to be “tagged” in advance

● Results can depend strongly on the genre of
the corpus. A corpus of technical documents
will probably resolve the word “mouse” in the
computer sense more than the zoological
sense (P(A) near 1, P(B) near 0)

● Still not a silver bullet – statistics still can't
capture the real-world knowledge humans
bring to bear on these disambiguation tasks
(e.g. Sample sentences!)

Language survey

● Almost 7000 spoken languages in the world
● Most have fewer than 10K speakers, and it's

expected that at least half will be extinct by
2100

● I am a speaker of one of these endangered
languages (Irish, which has less than 20K
daily speakers)

● Goal is to develop NLP technology for many
of them in the interest of universal
accessibility and language preservation

● Statistical techniques are driven by data
(corpora and lexicons) - the “data
bottleneck” for small languages

Breaking the data
bottleneck

● Large corpora already exist for major
languages such as English, French, Chinese,
obtained from publishers, scanning programs

● Rise of statistical NLP coincided with rise of
the Web: virtually unlimited training data

● I have a web crawler running at SLU that is
gathering corpora for 427 languages:
http://borel.slu.edu/crubadan/

● Volunteers from around the world are helping
edit data extracted from these corpora to
create open source spell checkers (more than
20 so far), and some more advanced tools
(grammar, MT)

http://borel.slu.edu/crubadan/

Morphological Description

● Root words with
one or two
prefixes and one
or two suffixes

● This simplified
description is
easily encoded by
novices and well-
supported in open
source tools
(OpenOffice.org,
Mozilla FF/TB)

Affix file syntax:
[PS]FX name strip add match

moai->moaie, kreas->kreaze
SFX S 0 e [^esh]
SFX S ch ge ch
SFX S s ze s

moai->moaier, kreas->kreazer
SFX T 0 er [^es]
SFX T 0 r e
SFX T s zer s

moai->moaist, kreas->kreast
SFX U 0 st [^es]
SFX U 0 t s

...

Extract root words from
corpus

wurdearje/V (5/5): wurdearje(18), wurdearrest(1), wurdearret(1), wurdearre(26), wurdearren(3),
wurdearjend(1)

reagearje/V (5/5): reagearje(15), reagearrest(1), reagearret(13), reagearre(17), reagearren(3),
reagearjend(1)

ynspirearje/V (4/5): ynspirearje(11), ynspirearrest(0), ynspirearret(2), ynspirearre(23),
ynspirearren(1), ynspirearjend(12)

studearje/V (4/5): studearje(27), studearrest(0), studearret(17), studearre(34), studearren(4),
studearjend(1)

konsumearje/V (4/5): konsumearje(1), konsumearrest(0), konsumearret(1), konsumearre(2),
konsumearren(1), konsumearjend(1)

funksjonearje/V (4/5): funksjonearje(7), funksjonearrest(0), funksjonearret(9), funksjonearre(5),
funksjonearren(1), funksjonearjend(1)

tramtearje/V (4/5): tramtearje(2), tramtearrest(0), tramtearret(1), tramtearre(1), tramtearren(1),
tramtearjend(1)

presintearje/V (3/5): presintearje(11), presintearrest(0), presintearret(5), presintearre(34),
presintearren(3), presintearjend(0)

komponearje/V (3/5): komponearje(1), komponearrest(0), komponearret(1), komponearre(2),
komponearren(1), komponearjend(0)

..........
●

Tagged lexicon, POS
tagger

● This approach ensures obscure derived forms
are included, unlike a pure corpus approach

● Also, it turns out that POS tagging is easy
enough that you can learn a statistical model
from untagged corpora (e.g. using Brill's
unsupervised algorithm)

● The intuition is that there are sufficiently
many unambiguous words (occupant,
spooky, comprehend) for you to learn how to
handle the ambiguous ones (work, type,
drive, ...)

Lingua::GA::Gramadoir

● Perl module for grammar checking Irish texts
● “An Gramadóir” means “The Grammarian”
● Also provides an interface that allows the

module to be used as a basis for more
advanced NLP tools for Irish

● Available from CPAN (Artistic License)
● “Programs writing programs”: most of the

module is generated automatically by a
separate “higher order”, language-
independent package known simply as
“gramadoir”. More on this in a minute...

● Built using lexicons, POS tagger bootstrapped
from web corpora discussed earlier

Why Celtic languages are
easy

● Most of the grammatical errors in Irish have
to do with so-called “initial mutations”

● bean=a woman; an bhean=the woman
(“lenition”); bhur mbean=y'all's woman
(“eclipsis”)

● There are literally hundreds of subtle rules
governing when these mutations occur; very
difficult for learners, and even native
speakers don't follow all of the rules always

● Also, there was a major spelling reform in
Irish in the 1940's and it is important for a
grammar checker to catch and correct pre-
standard forms

Pipeline architecture

● Preprocessing (strip SGML tags, convert to native
encoding)

● Segmentation (break text into sentences)
● Tokenization (surround words with <c>word</c>

tags)
● Lexicon lookup (assign all possible POS tags to each

word)
● POS tagging (assign best POS tag to each word)
● Grammatical rules (pattern match errors specified by

rules)

Sample tagged text:
<V cop="y">is</V> maith <O>liom</O> <N pl="y"

g="n" gnd="m">focail</N> ghránna

Rule Specification

● Rule: “Lenite adjective modifying a plural noun ending in a
slender consonant”; slender means the final vowel is e, é, i, or
í; so “focal gránna” (ugly word) but “focail ghránna” (ugly
words).

<NP>SLENDERFINALCONSONANT</NP> UNLENITED:LENITE

● We'd like to turn this into a regex to pattern match against
POS-tagged text that the user inputs. <NP> isn't an actual tag,
but expands like a macro to match <N pl=”y”[^<]*>.
Similarly, SLENDERFINALCONSONANT and UNLENITED expand like
macros to regexen [^<]*[eéií][^aeiouáéíóú<]+ and, respectively,

 (?:[BbCcDdFfGgMmPpTt][^Hh']|[Ss][lnraeiouáéíóú]|bh[Ff])[^<]*

● The higher-order scripts convert this rule into a Perl
substitution that looks schematically like this:
s/(<N pl=”y”[^<]*>[^<]*... etc.)/<E msg=”LENITE”>$1<\/E>/g

Command line script

● Reads from stdin, writes to stdout
● $ echo “an bean” | gram-ga.pl
1: an bean
Lenition missing
● $ echo “an bean” | gram-ga.pl --api
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE matches SYSTEM "http://borel.slu.edu/dtds/api-

output.dtd">
<matches>
<error fromy="0" fromx="0" toy="0" tox="6"

ruleId="Lingua::GA::Gramadoir" msg="Séimhiú ar iarraidh"
context="an bean" contextoffset="0" errorlength="7"/>

</matches>
● Used as an interface with various front-ends:

vim, emacs, OpenOffice.org, and web
interface at http://borel.slu.edu/gramadoir/form.html

Lingua::GA::Gramadoir
methods

● get_sentences TEXT (returns an array of sentences)
● tokenize TEXT (returns an array of words)
● spell_check TEXT (returns array of misspelled words)
● all_possible_tags WORD (returns word, marked up)
● add_tags TEXT (returns marked up text,

disambiguated)
● xml_stream TEXT (like add_tags, but with gram.

errors)
● grammatical_errors TEXT (for --api option)

Languages in progress

● Lingua::XX::Gramadoir modules to
come...

● Afrikaans, Akan, Cornish, Esperanto,
French, Hiligaynon, Icelandic, Igbo,
Languedocien, Scottish Gaelic, Tagalog,
Walloon, and Welsh

● Welsh is the most advanced of these; a
preliminary version is available through
a web interface here: http://www.klebran.org.uk/

	Sleamhnán 1
	Sleamhnán 2
	Sleamhnán 3
	Sleamhnán 4
	Sleamhnán 5
	Sleamhnán 6
	Sleamhnán 7
	Sleamhnán 8
	Sleamhnán 9
	Sleamhnán 10
	Sleamhnán 11
	Sleamhnán 12
	Sleamhnán 13
	Sleamhnán 14
	Sleamhnán 15
	Sleamhnán 16
	Sleamhnán 17
	Sleamhnán 18
	Sleamhnán 19

