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Abstract 24 

 25 

It is a central goal of human microbiome studies to see the roles of the microbiome as a mediator 26 

that transmits environmental, behavioral, or medical exposures to health or disease outcomes. Yet, 27 

mediation analysis is not used as much as it should be. One reason is because of the lack of 28 

carefully planned routines, compilers and automative computing systems for microbiome 29 

mediation analysis to perform a series of data processing, diversity calculation, data normalization, 30 

downstream data analysis and visualizations. Many researchers in various disciplines (e.g., 31 

clinicians, public health practitioners, biologists) are not also familiar with related statistical 32 

methods and programming languages on command-line interfaces. Thus, here we introduce a web 33 

cloud computing platform, named MiMed, that enables comprehensive microbiome mediation 34 

analysis on user-friendly web interfaces. We applied MiMed to the study on the mediating roles 35 

of oral microbiome in subgingival niches between e-cigarette smoking and gingival inflammation, 36 

and found significant mediating effects from two phyla (Proteobacteria, Spirochaetes), two 37 

classes (Flavobacteriia, Betaproteobacteria), four orders (Flavobacteriales, Burkholderiales, 38 

Neisseriales, Cardiobacteriales), five families (Flavobacteriaceae, Burkholderiaceae, 39 

Neisseriaceae, Cardiobacteriaceae, Enterococcaceae), and eight genera (Bergeyella, 40 

Capnocytophaga, Actinomyces, Haemophilus, Kingella, Burkholderia, Cardiobacterium, 41 

Enterococcus). 42 

 43 

Importance 44 

 45 
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The main features of MiMed are as follows. First, MiMed can survey the microbiome in various 46 

spheres (1) as a whole microbial ecosystem using different ecological measures (e.g., alpha- and 47 

beta-diversity indices) or (2) as individual microbial taxa (e.g., phyla, classes, orders, families, 48 

genera, species) using different data normalization methods. Second, MiMed enables covariate-49 

adjusted analysis to control for potential confounding factors (e.g., age, gender), which is essential 50 

to enhance the causality of the results especially for observational studies. Third, MiMed enables 51 

a breadth of statistical inferences in both mediation effect estimation and significance testing. 52 

Fourth, MiMed provides flexible and easy-to-use data processing and analytic modules and creates 53 

nice graphical representations. Finally, MiMed employs ChatGPT to search for what have been 54 

known about the microbial taxa that are found significantly as mediators using AI technologies. 55 

MiMed is freely available on our web server (http://mimed.micloud.kr). 56 

 57 

Keywords. Causal mediation analysis, Microbiome data analysis, Web cloud computing, Causal 58 

inference, Human microbiome 59 

 60 

Introduction 61 

 62 

The human microbiome is the totality of all microbes that live on and inside various organs (e.g., 63 

gut, mouth, skin, nose) of the human body. The advances in massively parallel metagenomic 64 

sequencing have dramatically lowered the cost of microbiome profiling with substantial increase 65 

in accuracy. Then, the microbiome field has not only become an active area of research, but has 66 

also rapidly grown in industry with the aim of identifying new ways to diagnose, treat and prevent 67 

human diseases. 68 
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Researchers have revealed a sophisticated interplay between microbiome and its host in various 69 

aspects. For instance, microbiome diversity and its taxonomic composition have been related to a 70 

variety of environmental, behavioral or medical exposures (e.g., diet [1], residence [2], smoking 71 

[3], preterm birth [4], delivery mode [5, 6], antibiotic/probiotic use [7, 8]). Researchers have also 72 

found that microbiome dysbiosis can lead to numerous disorders (e.g., obesity [9, 10], intestinal 73 

disease [11, 12, 13], cancers [14, 15, 16], diabetes [8, 17], brain disorders [18, 19]). However, 74 

beyond such separate discoveries, it is essential to understand if the microbiome transmits the 75 

effects of environmental, behavioral or medical exposures (say, treatment) to health or disease 76 

outcomes (say, outcome) as a mediator (Fig. 1), which can be surveyed through causal mediation 77 

analysis [20].  78 

Mediation analysis aims to comprehend the underlying mechanism in an observed relationship 79 

between a treatment and an outcome through a third hypothetical variable, known as a mediator, 80 

indirectly. That is, in human microbiome studies, mediation analysis surveys two links jointly, (1) 81 

the effect of a treatment on microbiome (denoted as ‘treatment - microbiome’) and (2) the effect 82 

of microbiome on an outcome conditional on treatment status (denoted as ‘microbiome - outcome’) 83 

(Fig. 1). If we lose any one of these two links, microbiome does not serve as a mediator. That is, 84 

if we have ‘treatment - microbiome’ but do not have ‘microbiome - outcome’, the treatment alters 85 

microbiome, but the altered microbiome has no effect on the outcome. This means that the effect 86 

of the treatment on the outcome was made ‘directly’ or by some other unknown pathways, not 87 

through the microbiome. Similarly, if we do not have ‘treatment - microbiome’ but have 88 

‘microbiome - outcome’, the treatment does not alter the microbiome, but only the variability in 89 

microbiome due to some other unknown sources influences the outcome. Thus, the roles of the 90 

microbiome as a mediator are satisfied only when we have both links [20], which we refer as the 91 
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presence of ‘indirect’ or ‘mediation’ effect. It substantially matters in a clinical context because if 92 

the microbiome is not in a causal pathway, any medical interventions to the microbiome do not 93 

fundamentally treat or prevent human diseases. 94 

However, in human microbiome studies, mediation analysis is not used as much as it should be. 95 

One reason is because of the lack of carefully planned routines, compilers and automative 96 

computing systems [21] for microbiome mediation analysis to perform a series of data processing, 97 

diversity calculation, data normalization, downstream data analysis and visualization. The 98 

microbiome data are highly complex and demand many data processing and analytic procedures. 99 

Many researchers in various disciplines (e.g., clinicians, public health practitioners, biologists) are 100 

not also familiar with related statistical methods and programming languages on command-line 101 

interfaces. Moreover, there are many other important issues that need to be addressed for 102 

microbiome causal mediation analysis as follows. First, we can view the microbiome as a whole 103 

community in an ecological context (referred in this paper for ‘community-level analysis’) or can 104 

focus on individual microbial taxa at various taxonomic hierarchies (i.e., phyla, classes, orders, 105 

families, genera, species) (referred in this paper for ‘taxonomy-level analysis’). Researchers 106 

usually survey the former using different ecological measures (e.g., alpha- and beta-diversity 107 

indices) [22, 23] and the latter using different data normalization methods (e.g., centered-log ratio 108 

(CLR) [24], arcsine-root [25]). Second, covariate-adjusted analysis is needed to control for 109 

potential confounding factors (e.g., age, gender), which is especially necessary for observational 110 

studies to enhance the causality of the results. Third, both mediation effect estimation and 111 

significance testing are important portions of statistical inference for better interpretability. Fourth, 112 

we need flexible and easy-to-use data processing and analytic modules as well as high-quality 113 

visualizations to be included in an academic paper. Finally, we need to figure out what have been 114 
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known about the microbes that we discovered as significant mediators. However, it is not easy in 115 

practice to figure it out all manually since there are too many microbial taxa [26] and related prior 116 

studies. Hence, we may need a well-trained artificial intelligence (AI) machine that can do such a 117 

job for us. 118 

To tackle all those critical issues described above, here we introduce a web cloud computing 119 

platform, named MiMed, that enables comprehensive microbiome mediation analysis on user-120 

friendly web interfaces. MiMed is the first web cloud computing platform for microbiome causal 121 

mediation analysis, which is distinguished from our prior platforms: (1) MiCloud for association 122 

analysis in cross-section or longitudinal microbiome studies [27]; (2) MiPair for design-based 123 

comparative analysis with paired microbiome data [28]; and (3) MiSurv for microbiome data 124 

analysis with survival responses [29]. Interestingly, MiMed is also built-in the popular AI language 125 

model, ChatGPT, to easily search for what have been known about the microbial taxa that are 126 

found significantly as mediators. 127 

In the following Results section, we describe all the data processing and analytic modules one 128 

by one using an example study to see the mediating roles of oral microbiome between e-cigarette 129 

smoking and gingival inflammation [30]. Then, in the Discussion section, we summarize and 130 

discuss all the features and implications of MiMed. Finally, in the Methods section, we discuss the 131 

methodological ideas of causal mediation analysis methods, and describe our web server and local 132 

GitHub repository. MiMed is freely available on our web server (http://mimed.micloud.kr) or can 133 

alternatively run on a user’s local computer (https://github.com/yj7599/MiMedGit). 134 

 135 

Results 136 

 137 
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Application Note: On the Roles of Oral Microbiome Between E-138 

cigarette Smoking and Gingival Inflammation 139 

To ease our demonstration, we use example data to survey the mediating roles of oral microbiome 140 

between e-cigarette smoking and gingival inflammation [30]. The original data are huge and can 141 

motivate a broad range of study orientations. We refer the original study paper [30] for all the 142 

details on study subjects, sample collection/processing, and sequencing/quantification procedures.  143 

To describe only the portion of the data we use, the data are 16S oral microbiome data in 144 

subgingival niches obtained at the baseline visit of the subjects between 18 and 34 years in age. 145 

We employed a bioinformatic pipeline, QIIME2 [31], based on the expanded human oral 146 

microbiome database (eHOMD) [32] for raw sequence data processing, denoising, feature 147 

extraction/quantification, taxonomic annotation, and phylogenetic tree construction. We added 148 

detailed description on the use of each module using these example data at the end of each 149 

following section (see Application Note).  150 

 151 

Data Processing: Data Input 152 

Microbiome data can be composed of three data components: (1) a feature table (i.e., count data 153 

for operational taxonomic units (OTUs) or amplicon sequence variants (ASVs)), (2) a taxonomic 154 

table (i.e., taxonomic annotations at various taxonomic hierarchies, kingdom, phylum, class, order, 155 

family, genus, species), and (3) a phylogenetic tree (i.e., a rooted phylogenetic tree for evolutionary 156 

relationships across features, that are OTUs or ASVs). Of course, in addition to microbiome data, 157 

metadata on a treatment variable (e.g., environmental, behavioral or medical exposures), an 158 

outcome variable (e.g., health or disease status), and possibly covariates (e.g., age, gender) for 159 



8 
 

study subjects are needed. If we have all these data components, we can conduct microbiome 160 

causal mediation analysis comprehensively using all available functions of MiMed. However, 161 

researchers do not always have all these data components, but even in such a case, they can still 162 

want to conduct at least some parts of the analysis. Thus, we made the Data Input module flexible 163 

as follows.  164 

(1) To fully perform all community-level analyses for all non-phylogenetic and phylogenetic 165 

alpha- and beta-diversity indices as well as all taxonomy-level analyses, users should 166 

upload a feature table, a taxonomic table, a phylogenetic tree, and metadata. 167 

(2) To perform community-level analyses for only non-phylogenetic alpha- and beta-diversity 168 

indices as well as all taxonomy-level analyses, users can upload only a feature table, a 169 

taxonomic table, and metadata. 170 

(3) To perform only community-level analyses for all non-phylogenetic and phylogenetic 171 

alpha- and beta-diversity indices, users can upload only a feature table, a phylogenetic tree, 172 

and metadata. 173 

(4) To perform only community-level analyses for only non-phylogenetic alpha- and beta-174 

diversity indices, users can upload only a feature table and metadata. 175 

Users can upload their data components in a widely used unified format, called phyloseq [33], 176 

or as separate files.  177 

Application Note: The example data we use can be downloaded in the Example Data section on 178 

the Data Input module. To help users to easily understand data components and their corresponding 179 

data analytic modules as described above, we uploaded four different sets of data components: (1) 180 

a feature table, a taxonomic table, a phylogenetic tree, and metadata; (2) a feature table, a 181 

taxonomic table, and metadata; (3) a feature table, a phylogenetic tree, and metadata; (4) a feature 182 
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table and metadata. Though since we aim in this paper to describe all available functions of MiMed, 183 

we uploaded the one with all data components (i.e., a feature table, a taxonomic table, a 184 

phylogenetic tree, and metadata). 185 

 186 

Data Processing: Quality Control  187 

MiMed performs quality controls (QCs) just as in MiCloud [27] and MiPair [28]. That is, users 188 

need to select (1) a kingdom of interest (default: Bacteria), (2) a minimum library size (i.e., total 189 

read count) for the study subjects to be rescued (default: 3,000), (3) a minimum mean relative 190 

abundance (i.e., proportion) for the features (OTUs or ASVs) to be rescued (default: 0.002%), and 191 

(4) erroneous taxonomic names in the taxonomic table to be removed.  192 

MiMed displays the sample size, the number of features (OTUs or ASVs), the number of phyla, 193 

the number of classes, the number of orders, the number of families, the number of genera and the 194 

number of species using summary boxes before and after QCs. MiMed also visualizes library sizes 195 

across study subjects as well as mean proportions across features using interactive histograms and 196 

box plots before and after QCs.  197 

Application Note: We simply clicked the Run button to apply the default QC settings. Then, 147 198 

subjects with 2,328 features, 11 phyla, 23 classes, 34 orders, 52 families, 99 genera and 215 species 199 

were retained in the following analyses (Fig. 2).  200 

 201 

Community-level Analysis: Diversity Calculation 202 

As in MiCloud [27], MiPair [28] and MiSurv [29], MiMed calculates 9 alpha-diversity indices 203 

(i.e., 8 non-phylogenetic indices: Observed, Shannon [34], Simpson [35], Inverse Simpson [35], 204 

Fisher [36], Chao1 [37], abundance-based coverage estimator (ACE) [38], incidence-based 205 
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coverage estimator (ICE) [39]; 1 phylogenetic index: phylogenetic diversity (PD) [40]) and 5 beta-206 

diversity indices (i.e., 2 non-phylogenetic indices: Jaccard dissimilarity [41], Bray-Curtis 207 

dissimilarity [42]; 3 phylogenetic indices: Unweighted UniFrac distance [43], Generalized 208 

UniFrac distance [44], Weighted UniFrac distance [45]). For reference, users can download all the 209 

calculated alpha- and beta-diversity indices.  210 

Application Note: We simply clicked the Run button to calculate all the alpha- and beta-diversity 211 

indices. 212 

 213 

Community-level Analysis: Alpha Diversity 214 

This module analyzes if a treatment alters alpha-diversity, and then the altered alpha-diversity, in 215 

turn, influences an outcome, where the alpha-diversity can be surveyed using each of the 9 alpha-216 

diversity indices. Users first need to select (1) a treatment variable (e.g., diet, residence, smoking, 217 

preterm birth, delivery mode, antibiotic/probiotic use), (2) an outcome variable (e.g., health or 218 

disease status), (3) to include an interaction term between a treatment and a mediator (alpha-219 

diversity) in the model or not, and (4) covariates (e.g., age, gender) to be adjusted for. We set the 220 

interaction term to be included (yes) as default since it is more natural to assume that the effect of 221 

microbiome on an outcome can be modulated by a treatment. That is, in order words, the effect of 222 

microbiome on an outcome can be different by treatment status. Ignoring the presence of such 223 

interaction effects may cause potential bias in mediation analysis [46, 47]. The only available 224 

analytic method that can address interaction effect is the Imai method [48]) [Table 1]. The Imai 225 

method [48] in addition allows covariate adjustments, estimates mediation effects in both point 226 

and interval estimation, and reports a P-value for significance testing. The other available analytic 227 

methods are two traditional (but still in wide use) methods, the Sobel test [49] and Preacher-Hayes 228 
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approach [50, 51], and one recent method, named Divide-Aggregate Composite-null Test (DACT) 229 

[52]. We organized available functions for different mediation analysis methods in [Table 1]. We 230 

discuss them further later in the Methods section. MiMed visualizes the results from its alpha-231 

diversity analysis using forest plots. 232 

Application Note: We selected e-cigarette smoking as a treatment variable, gingival inflammation 233 

as an outcome variable, and age, sex and the frequency of brushing teeth as covariates to be 234 

adjusted for in the presence of interaction between e-cigarette smoking and alpha-diversity. Then, 235 

we found significant results using the Imai method [48] as e-cigarette smoking alters alpha-236 

diversity of the oral microbiome in subgingival niches, and the altered alpha-diversity, in turn, 237 

influences gingival inflammation according to Observed, Shannon [34], InvSimpson [35], Fisher 238 

[36], Chao1 [37], ACE [38] and ICE [39] indices (Fig. 3).  239 

 240 

Community-level Analysis: Beta Diversity 241 

This module analyzes if a treatment alters beta-diversity, and then the altered beta-diversity, in 242 

turn, influences an outcome, where the beta-diversity can be surveyed using each of the 5 beta-243 

diversity indices. As for alpha-diversity analysis, users need to select (1) a treatment variable (e.g., 244 

diet, residence, smoking, preterm birth, delivery mode, antibiotic/probiotic use), (2) an outcome 245 

variable (e.g., health or disease status), and (3) covariates (e.g., age, gender) to be adjusted for. 246 

MedTest [53] is currently the only available analytic method that can conduct causal mediation 247 

analysis for beta-diversity [Table 1]. While MedTest [53] allows covariate adjustments and reports 248 

a P-value for significance testing, it is purely a test for significance with no facilities for mediation 249 

effect estimation [Table 1]. Furthermore, it does not allow any interaction term to be included 250 
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[Table 1]. MiMed visualizes the results from its beta-diversity analysis using principal coordinate 251 

analysis (PCoA) plots [54].  252 

Application Note: We selected e-cigarette smoking as a treatment variable, gingival inflammation 253 

as an outcome variable, and age, sex and the frequency of brushing teeth as covariates to be 254 

adjusted for. Then, we found significant results using MedTest [53] as e-cigarette smoking alters 255 

beta-diversity of the oral microbiome in subgingival niches, and the altered beta-diversity, in turn, 256 

influences gingival inflammation according to Jaccard dissimilarity [41], Bray-Curtis dissimilarity 257 

[42], Generalized UniFrac distance [44] and Weighted UniFrac distance [45] (Fig. 4). 258 

 259 

Taxonomy-level Analysis: Data Normalization 260 

MiMed normalizes taxonomic relative abundances using CLR [24] and arcsine-root [55] 261 

transformations. The CLR transformation is the most widely used normalization method in the 262 

microbiome field to relax the compositional constraint of the data [24]. The arcsine-root 263 

transformation is a traditional approach to stabilize the variance of relative abundances [55]. The 264 

arcsine-root transformation has also recently been often used in the microbiome field [25]. For 265 

reference, users can download all the original count and normalized taxonomic data for microbial 266 

taxa at various taxonomic hierarchies (i.e., phyla, classes, orders, families, genera, species). 267 

Application Note: We simply clicked the Run button to normalize taxonomic relative abundances. 268 

 269 

Taxonomy-level Analysis: Taxonomic Analysis 270 

This module analyzes if a treatment alters microbial taxa, and then the altered microbial taxa, in 271 

turn, influence an outcome. Users first need to select a data format, CLR [24] or arcsine-root 272 

transformed data. There has been a long debate on which data normalization method is the best, 273 



13 
 

but it is beyond the scope of this paper to make any resolute judgement on it. We set CLR [24] as 274 

default and arcsine-root as a user option based on their popularities. As for alpha-diversity analysis, 275 

users then need to select (1) a treatment variable (e.g., diet, residence, smoking, preterm birth, 276 

delivery mode, antibiotic/probiotic use), (2) an outcome variable (e.g., health or disease status), (3) 277 

to include an interaction term between a treatment and a mediator (taxon) in the model or not, and 278 

(4) covariates (e.g., age, gender) to be adjusted for. Again, the only available analytic method that 279 

can address interaction effect is the Imai method [48] [Table 1]. Importantly, the Imai method [48] 280 

is a non-parametric method based on a bootstrap approach [56]. Thus, it is highly robust against 281 

the high skewness of microbiome data, especially the rare microbial taxa with excessive zeros [48]. 282 

The other available analytic methods are two parametric methods, the Sobel test [49] and DACT 283 

[52] [Table 1]. We set the Imai method [48] as default and the Sobel test [49] and DACT [52] as 284 

user options [Table 1], which is because of the robust performance of the Imai method [48] as well 285 

as its broad range of functionalities [Table 1]. We discuss methodological details further later again 286 

in the Methods section. To control for false discovery rates (FDR), MiMed applies the Benjamini-287 

Hochberg (BH) procedure [57] to each taxonomic hierarchy. MiMed visualizes the results from 288 

its taxonomic analyses using forest plots and dendrograms. 289 

Ask ChatGPT: In this sub-module, users can ask ChatGPT a question: What is known about 290 

(discovered taxon) on (treatment) and (outcome)? For this, users first need to insert a ChatGPT 291 

APT key that can be freely obtained on the website (https://platform.openai.com/account/api-keys). 292 

Then, users need to select a taxonomic rank (i.e., phylum, class, order, family, genus, species) and 293 

a taxon that is discovered as a significant mediator, and then rename the treatment and outcome 294 

variables using a human language (not code names). Then, ChatGPT will answer your question.  295 
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Application Note: We selected CLR as a normalization method, e-cigarette smoking as a 296 

treatment variable, gingival inflammation as an outcome variable, and age, sex and the frequency 297 

of brushing teeth as covariates to be adjusted for. Then, we found 21 significant taxa at the 298 

taxonomic hierarchies from phylum to genus (i.e., two phyla: Proteobacteria, Spirochaetes, two 299 

classes: Flavobacteriia, Betaproteobacteria, four orders: Flavobacteriales, Burkholderiales, 300 

Neisseriales, Cardiobacteriales, five families: Flavobacteriaceae, Burkholderiaceae, 301 

Neisseriaceae, Cardiobacteriaceae, Enterococcaceae, and eight genera: Bergeyella, 302 

Capnocytophaga, Actinomyces, Haemophilus, Kingella, Burkholderia, Cardiobacterium, 303 

Enterococcus) using the Imai method [48] as e-cigarette smoking alters their relative abundances, 304 

and the altered relative abundances, in turn, influence gingival inflammation (Fig. 5 and Fig. 6). 305 

We also asked ChatGPT a question, “What is known about Bergeyella on e-cigarette and gingival 306 

inflammation?”, selecting a taxonomic rank as genus and a discovered taxon as Bergeyella, and 307 

renaming the treatment and outcome variables as e-cigarette and gingival inflammation. Then, 308 

ChatGPT aided to reconfirm our results answering as “Bergeyella is a gram-negative bacteria that 309 

is commonly found in the oral microbiome. It has been associated with various oral diseases 310 

including gingivitis and periodontitis. There is some preliminary evidence suggesting that e-311 

cigarettes may contribute to gingival inflammation and changes in the oral microbiome, including 312 

an increase in the abundance of Bergeyella. A study published in Scientific Reports in 2019 313 

reported that e-cigarette users had higher levels of gingival inflammation and an altered oral 314 

microbiota compared to non-smokers or smokers of traditional cigarettes. Specifically, the study 315 

found that e-cigarette users had increased levels of Bergeyella, as well as other potentially 316 

pathogenic bacteria, in their oral microbiota. While the relationship between Bergeyella and e-317 
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cigarettes is still being explored and more research is needed to fully understand the implications, 318 

these findings suggest that e-cigarette use may have negative effects on oral health.” (Fig. 7).  319 

 320 

Discussion 321 

 322 

Researchers are interested in discovering causal mechanisms through which environmental, 323 

behavioral or medical exposures influence health or disease outcomes. A promising approach has 324 

been to use mediation analysis, though it is highly demanding in the human microbiome field. The 325 

microbiome data are huge and highly complex, and many researchers are not familiar with dealing 326 

with such microbiome data. Thus, we need a well-designed ‘software’ that enables user-friendly 327 

operations for microbiome causal mediation analysis.  328 

In this paper, we introduced MiMed that is the first web cloud computing platform for 329 

microbiome causal mediation analysis. MiMed enables a long sequence of data processing and 330 

analytic operations on user-friendly web interfaces with widely extended flexibility and 331 

functionality. MiMed surveys the microbiome in various spheres as a whole ecosystem or as 332 

individual microbial taxa at various taxonomic hierarchies. MiMed also enables covariate-adjusted 333 

analysis and a breadth of statistical inferences in both mediation effect estimation and significance 334 

testing. MiMed also provides step-by-step data processing and analytic modules, and creates high-335 

quality visualizations. Interestingly, MiMed is also built-in the recent popular chatbot, ChatGPT, 336 

to easily search for prior knowledge on discovered taxa using AI technologies. The ChatGPT 337 

module can be useful to re-confirm the analysis results from MiMed. 338 

MiMed is comprehensive and built with many data processing and analytic approaches. It is 339 

usual in the human microbiome field that there is no consensus on which approach is always the 340 
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best. That is, there is not anything that is superior to the others in all contexts and situations. We 341 

are also curious about many different approaches. Thus, we left much room for our users to freely 342 

explore through many user options, while making a series of recommendations, as a developer, 343 

through default settings. For user’s convenience, MiMed also displays a list of references for the 344 

approaches that they use. 345 

The human microbiome field is rapidly emerging, and the microbiome data are recently 346 

flooded. Yet, the microbiome data are demanding, and we are all so busy. Thus, MiMed can be 347 

attractive and useful in practice because it is user-friendly. MiMed will also provide new insights 348 

to the human microbiome field through causal mediation analysis that is “too important to abandon” 349 

[48].   350 

 351 

Methods 352 

 353 

Statistical Methods 354 

This section is devoted to describing the methodological aspects of the causal mediation analysis 355 

methods that are available in MiMed. We describe only the conceptual ideas and terms to help our 356 

users to easily understand them, while referencing the original papers for all technical details.  357 

To begin with the Sobel test [49], Preacher-Hayes approach [50, 51]), and DACT [52], the 358 

Baron and Kenny’s two regression models [20] below can first be considered.  359 

 𝑀𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 휀𝑖 (1) 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑀𝑖 + 𝛽1𝑇𝑖 + 𝜐𝑖 (2) 

, where 𝑇𝑖 is a treatment, 𝑀𝑖 is a mediator (e.g., an alpha-diversity index or a microbial taxon), 𝑌𝑖 360 

is a health or disease outcome, 𝛼0 and 𝛽0 are intercepts, 𝛼1 and 𝛽1are slopes, and 휀𝑖  and 𝜐𝑖  are 361 
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independently distributed ransom errors with mean zero and variance 𝜎2 for the units i = 1, …, n. 362 

To ease our demonstration, we suppose in addition that 𝑇𝑖 is a binary treatment variable (𝑇𝑖 = 0 for 363 

control & 𝑇𝑖 = 1 for treatment), and 𝑌𝑖 is a continuous health or disease outcome variable. Yet, 364 

more extensions are available [Table 1]. Then, the null and alternative hypotheses below are 365 

considered. 366 

 𝐻0: 𝛼1𝛽1 = 0 vs. 𝐻1: 𝛼1𝛽1 ≠ 0 (3) 

Here, 𝛼1 represents the effect of the treatment (𝑇𝑖) on the mediator (𝑀𝑖) as in Eq. (1), and 𝛽1 367 

represents the effects of the mediator (𝑀𝑖) on the outcome (𝑌𝑖) conditional on treatment status (𝑇𝑖) 368 

as in Eq. (2). Then, the null hypothesis, 𝐻0: 𝛼1𝛽1 = 0, states that at least one of 𝛼1 and 𝛽1 equals 369 

to zero indicating no mediation effect, while the alternative hypothesis, 𝐻1: 𝛼1𝛽1 ≠ 0, states that 370 

both 𝛼1  and 𝛽1  are non-zero indicating the presence of mediation effect. The Sobel test [49] 371 

conducts significance testing for Eq. (3) using a parametric approach that assumes that 휀𝑖 and 𝜐𝑖 372 

in Eq. (1) and Eq. (2) are normally distributed. In contrast, the Preacher-Hayes approach [50, 51] 373 

does it non-parametrically using a bootstrap method [56] without the normality assumption. As for 374 

the Sobel test [49], DACT [52] is a parametric approach, but considers the null hypothesis, 𝐻0: 375 

𝛼1𝛽1 = 0, in Eq. (3) as a composite hypothesis that 𝐻0: (1) 𝛼1 = 0 & 𝛽1 ≠ 0; (2) 𝛼1 ≠ 0 & 𝛽1 = 0; 376 

or (3) 𝛼1 = 0 & 𝛽1 = 0; to improve statistical power while rejecting 𝐻0 for at least one of the three 377 

sub-statements.  378 

As for DACT [52], MedTest [53] considers the null hypothesis as a composite hypothesis, but 379 

it is a non-parametric significance test based on a permutation method. A more important 380 

distinction is that MedTest [53] formulates the mediator (𝑀𝑖) in Eq. (1) and Eq. (2) as a function 381 

of beta-diversity (say, 𝑓(𝑀)𝑖, where  𝑓(. ) is a function that transforms microbiome into a beta-382 

diversity index); as such, it enables causal mediation analysis for beta-diversity [Table 1]. 383 
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   We can classify the Sobel test [49], Preacher-Hayes approach [50, 51], DACT [52] and MedTest 384 

[53] as ‘product-of-coefficients’ methods because of their shared hypothesis of Eq. (3) in the form 385 

of 𝛼1𝛽1 (i.e., the product of coefficients from Eq. (1) and Eq. (2)). However, the Imai method [48] 386 

in contrast is based on a potential outcomes framework of causal inference [58] 𝑌𝑖(𝑇𝑖, 𝑀𝑖(𝑇𝑖)), 387 

where the level of health or disease outcome is a function of a treatment status (i.e., 𝑇𝑖) and the 388 

level of the mediator under a treatment status (i.e., 𝑀𝑖(𝑇𝑖)). Then, the unit-level ‘total treatment 389 

effect’ can be defined as Eq. (4), the unit-level ‘direct effect (DE)’ on the mediator can be defined 390 

for each treatment status (t = 0 for control or t = 1 for treatment) as Eq. (5), and finally the unit-391 

level ‘indirect effect or causal mediation effect (CME)’ can be defined for each treatment status (t 392 

= 0 for control or t = 1 for treatment) as Eq. (6), 393 

 𝜏𝑖 ≡ 𝑌𝑖(1, 𝑀𝑖(1)) - 𝑌𝑖(0, 𝑀𝑖(0)) (4) 

 휁𝑖(𝑡) ≡ 𝑌𝑖(1, 𝑀𝑖(t)) - 𝑌𝑖(0, 𝑀𝑖(t)) 
(5) 

 𝛿𝑖(𝑡) ≡ 𝑌𝑖(𝑡, 𝑀𝑖(1)) - 𝑌𝑖(𝑡, 𝑀𝑖(0)) (6) 

Here, the unit-level total treatment effect in Eq. (4) was formulated by subtracting the level of 394 

health or disease outcome for the unit under control and the level of the mediator under control 395 

from the level of health or disease outcome for the same unit under treatment and the level of the 396 

mediator under treatment. The unit-level DE for each treatment status (i.e., for control or treatment) 397 

in Eq. (5) was formulated by subtracting the level of health or disease outcome for the unit with 398 

under control from the level of health or disease outcome for the same unit under treatment. Finally, 399 

the unit-level CME for each treatment status (i.e., for control or treatment) in Eq. (6) was 400 

formulated by subtracting the level of health or disease outcome for the unit with the level of the 401 
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mediator under control from the level of health or disease outcome for the same unit with the level 402 

of the mediator under treatment. 403 

Then, the overall ‘average direct effect (ADE)’ can be found by the average between the 404 

average direct effect with the level of mediator under control, 
1

𝑛
∑ 휁𝑖(0)
𝑛
𝑖=1 , the average direct effect 405 

with the level of mediator under treatment, 
1

𝑛
∑ 휁𝑖(1)
𝑛
𝑖=1 . Finally, the overall ‘average causal 406 

mediation effect (ACME)’, that is the main result in causal mediation analysis, can be found by 407 

the average between the average causal mediation effect for control, 
1

𝑛
∑ 𝛿𝑖(0)
𝑛
𝑖=1 , and the average 408 

causal mediation effect for treatment, 
1

𝑛
∑ 𝛿𝑖(1)
𝑛
𝑖=1 .  409 

The Imai method [48] conducts interval estimation for ACME (overall) (as well as ACME 410 

(control), ACME (treatment), ADE (overall), ADE (control), ADE (treatment)) using a bootstrap 411 

method [56] non-parametrically, and its significance testing follows accordingly.  412 

There has been a long debate on parametric vs. non-parametric, but it is also beyond the scope 413 

of this paper to make any resolute judgement on it. However, it is usual that non-parametric 414 

approaches are more robust to highly skewed data (e.g., rare taxa with excessive zeros), while 415 

parametric approaches are well suited to less skewed data (e.g., alpha-diversity indices or common 416 

taxa). However, so long as the sample size is large, the skewness does not also substantially matter 417 

for parametric approaches. However, it does not also mean that non-parametric approaches are not 418 

suited to a large sample size. Parametric approaches are not well suited to high skewed data with 419 

a small sample size. Since the microbiome data are usually highly skewed (Fig. 2), we set non-420 

parametric approaches as default, but we do not discourage the use of parametric approaches, 421 

which are also widely used and reasonable approaches for a large sample size [Table 1]. 422 
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Web Server and Local GitHub Repository 423 

As for MiCloud [27], MiPair [28] and MiSurv [29], we wrote all the user interfaces and server 424 

functions using R shiny (https://shiny.rstudio.com). We then developed our web server using 425 

ShinyProxy (https://www.shinyproxy.io) and Apache2 (https://httpd.apache.org) on the operating 426 

system, Ubuntu 20.04 (https://ubuntu.com). The web server currently runs on a computer with the 427 

specifications of Intel Core i7-12700T (12-core) processor and 36 GB DDR4 memory, and takes 428 

up to ten concurrent users. In case that the web server is busy, we also developed a local GitHub 429 

repository to enable to run MiMed using a user’s local computers. As usual, we, as a host, are 430 

responsible for and devoted to maintaining our web server and local GitHub repository reliable. 431 

 432 

Data Availability 433 

We used public microbiome data, where the raw sequence data are deposited at the NCBI Gene 434 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under access number GSE201949. The 435 

processed data can also be found in the Example Data section on the Data Input module of MiMed 436 

(http://mimed.micloud.kr). 437 

 438 

Code Availability 439 

MiMed is freely available on our web server (http://mimed.micloud.kr) or can alternatively run on 440 

a user’s local computer (https://github.com/yj7599/MiMedGit). 441 

 442 
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Tables 630 

 631 

Table 1. Descriptive table for the functionalities of causal mediation analysis methods: Imai method, Sobel test, Preacher-Hayes approach, 632 

DACT and MedTest.  633 

 

Community-level Analysis 

Taxonomy-level Analysis 

Alpha Diversity Beta Diversity 

Treatment 

Variable 

Outcome 

Variable 
 Imai (Default) Sobel 

Preacher-

Hayes 
DACT 

MedTest 

(Default) 
Imai (Default) Sobel DACT 

Binary 

Binary 

Interaction O X X X X O X X 

Covariates O X O O O O X O 

Point Estimation O X O O X O X O 

Interval Estimation O X O X X O X X 

P-value O X X O O O X O 

Continuous 

Interaction O X X X X O X X 

Covariates O X O O O O X O 

Point Estimation O O O O X O O O 

Interval Estimation O X O X X O X X 

P-value O O X O O O O O 

Continuous 

Binary 

Interaction O X X X X O X X 

Covariates O X O O O O X O 

Point Estimation O X O O X O X O 

Interval Estimation O X O X X O X X 

P-value O X X O O O X O 

Continuous 

Interaction O X X X X O X X 

Covariates O X O O O O X O 

Point Estimation O O O O X O O O 

Interval Estimation O X O X X O X X 

P-value O O X O O O O O 

634 
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Figures 

 

Fig. 1. A conceptual illustration for the roles of the microbiome as a mediator between a 

treatment/exposure and a health or disease outcome with potential covariate effects.  
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Fig. 2. The status of the microbiome data after QCs. The summary boxes below display the 

sample size, the number of features, the number of phyla, the number of classes, the number of 

orders, the number of families, the number of genera and the number of species after QCs. The 

histograms and box plots below visualize the library sizes across study subjects and the mean 

proportions across features.  
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Fig. 3. The results for alpha-diversity. We surveyed if e-cigarette smoking alters alpha-diversity 

of the oral microbiome in subgingival niches, and the altered alpha-diversity, in turn, influences 

gingival inflammation, adjusting for age, sex and the frequency of brushing teeth.  
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Fig. 4. The results for beta-diversity. We surveyed if e-cigarette smoking alters beta-diversity of 

the oral microbiome in subgingival niches, and the altered beta-diversity, in turn, influences 

gingival inflammation, adjusting for age, sex and the frequency of brushing teeth.  
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Fig. 5. The results for microbial taxa. We surveyed if e-cigarette smoking alters the microbial 

taxa of the oral microbiome in subgingival niches, and the altered microbial taxa, in turn, influence 

gingival inflammation, adjusting for age, sex and the frequency of brushing teeth. 
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Fig. 6. A hierarchical visualization for the taxonomic discoveries. The numbers in circles are 

matched with the IDs in Fig. 5.  
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Fig. 7. The screenshot of the Ask ChatGPT module. We asked ChatGPT a question, “What is 

known about Bergeyella on e-cigarette and gingival inflammation?”. Then, ChatGPT answered 

the question. 
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