CS3100: Algorithms Homework 3 Fall 2017

CS3100: Algorithms

Homework 3

1. You are consulting for a trucking company that does a large amount of shipping between
Boston and New York. The volume is high enough that they have to send a number of trucks
each day between the two locations. Trucks have a fixed limit W on the maximum amount of
weight they are allowed to carry. Boxes arrive at the New York station one by one, and each
package ¢ has a weight w;. The trucking station is quite small, so at most one truck can be
at the station at any time. Company policy requires that boxes are shipped in the order they
arrive, since otherwise a customer might get upset at the unfair ordering. At the moment,
the company is using a simple greedy algorithm for packing: they pack boxes in the order
they arrive, and whenever the next box does not fit, they send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion
on whether the situation can be improved. Here is how they are thinking. Maybe one could
decrease the number of trucks needed by sometimes sending off a truck that was less full, and
in this way allow the next few trucks to be better packed.

Prove that for a given set of boxes with specified weights w; that the greedy algorithm
currently in use actually minimizes the number of trucks that are needed. (Hint: Your proof
should follow the same type of analysis as we used for the interval scheduling problem in class:
it should establish optimality of this greedy packing algorithm by identifying a measure under
which it ”stays ahead” or all other solutions.)

2. The wildly popular Spanish-language search engine El Goog needs to do a serious amount of
computation every time it recompiles its index. Forturnately, the company has at its disposal
a single large supercomputer, together with an essentially unlimited supply of high-end PCs.

They’ve broken the overall computation into n distinct jobs, labeled Jy, Ja, ..., J,, which
can be performed completely independently of one another. Each job consists of two stages:
first it needs to be preprocessed on the supercomputer, and then it needs to be finished on
one of the PCs. Our notation will be that job J; needs p; (or P[i], if you prefer to think of
these as input arrays) seconds on the supercomputer, followed by f; (or F[i]) seconds on a
PC.

Since there are at least n PCs available on the premises, the finishing of the jobs can be
done fully in parallel, so that all the jobs can be processed on PCs at the same time. However,
the supercomputer can only work on one job at a time, so the system managers need to work
out an order in which to feed jobs to the supercomputer. As soon as the first job is done on
the supercomputer, it will be handed to a PC for finishing; at that point in time, a second job
can be started on the supercomputer. When the second job is finished on the supercomputer,
it can proceed immediately to a PC for finishing regardless of whether the first job is done or
not (since PCs work in parallel), and so on.

A schedule is an ordering of the jobs for the supercomputer, and the completion time of
the schedule is the earliest time at which all jobs are finished processing on PCs. This is an
important quantity to minimize, since it determines how rapidly El Goog can generate a new
index.

Give a polynomial time algorithm (as fast as possible) that finds a schedule which is as
small as possible.



CS3100: Algorithms Homework 3 Fall 2017

3. Suppose you are a simple shopkeeper living in a country with n different types of coins, with
values 1 = ¢[1] < ¢[2] < -+- < ¢[n]. (In the U.S., n = 6 and the values are 1,5,10,25,50,
and 100 cents.) Your beloved and benevolent dictator, El Generalissimo, has decreed that
whenever you give a customer change you must use the smallest possible number of coins, so
as not to wear out the image of him so lovingly engraved on each coin.

(a) In the U.S., there is a simple greedy algorithm that always results in the smallest number
of coins: subtract the largest coin which is not too large and recursively give change for
the reminder. El Generalissimo does not approve of American capitalist greed, however.
Show that there is a set of coin values for which the greedy algorithm does not always
give the smallest possible number of coins.

(b) Now suppose El Generalissimo decides to impose a currency system where the coin
denominations are consecutive powers b9, b!, b2, ... b* of some integer b > 2. Prove that
despite El Generalissimo’s disapproval, the greedy algorithm described in part (a) does
make optimal change in this system as well.

(Hint: You can start with powers of 2, if that makes things more concrete, but then be
sure to justify why it generalizes for larger bases as welll)



