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Abstract We present a novel image recognition method based on the Blum me-
dial axis that identifies shape information present in unsegmented input images.
Inspired by prior work matching from a library using only the longest path in the
medial axis [3], we extract medial axes from shapes with clean contours and seek
to recognize these shapes within “noisy” images. Recognition consists of match-
ing longest paths from the segmented images into complicated geometric graphs,
which are computed via edge detection on the (unsegmented) input images to ob-
tain Voronoi diagrams associated to the edges. We present two approaches: one
based on map-matching techniques using the weak Fréchet distance, and one based
on a multiscale curve metric after reducing the Voronoi graphs to their minimum
spanning trees. This paper serves as a proof of concept for this approach, using
images from three shape databases with known segmentability (whale flukes, straw-
berries, and dancers). Our preliminary results on these images show promise, with
both approaches correctly identifying two out of three shapes.
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1 Introduction

We present a method and proof-of-concept for image recognition based on informa-
tion extracted from the Blum medial axis. Shape recognition and matching based
solely on contour points have been shown to perform weakly in the presence of
occlusion, partial data, and noise [22, 13, 4]. Unorganized point sets [5] represent-
ing boundaries of shapes are often matched using assignment algorithms for graph
matching [10]. Another class of methods which use Hausdorff distance to match the
edge maps [13] has the advantage of not requiring correspondences of edge features,
but they do not necessarily preserve the integrity of shape parts. Global shape rep-
resentations which are translation, rotation, or scale invariant such as coefficients of
Fourier descriptors [18] may result in incorrect matchings due to noise or occlusion.
Historically, approaches based on the medial axis have suffered from its instability
and complexity in the presence of noise and pixelation. Our approach is designed to
bypass those problems while preserving the strengths of the medial axis as a shape
descriptor, including meaningful decomposition into parts and stability despite oc-
clusion. Furthermore, our matching techniques are designed to be near-invariant to
Euclidean motions (translation, rotation, and scaling).

While shape recognition based on the medial axis has been well-studied for pre-
segmented shapes [26], this project is among the first to perform recognition using
the medial axis on an unsegmented unknown image. The basic concept builds on
previous work which recognizes objects by matching longest paths in the medial
axis, but only in the limited setting where the input is a “nice” shape taken from
a particular hand-drawn catalog [3]. Here, we apply a similar philosophy to match
shapes in the much more challenging domain where the input is an arbitrary image.
As a result, we must apply edge detection and other techniques in order to identify
significant shape information present in the image. Additionally, whereas [3] uses
both the medial skeleton and the radius function, our current results use only the
skeleton because extracting reliable radius information from arbitrary edges in an
image presents additional challenges.

Since there is no common frame of reference between shapes from our canonical
library of possibilities and our input image, we must match an arbitrary path (the
longest path from the canonical image) into a messy geometric graph (the Voronoi
diagram of the edges detected from our image). We use two different approaches
in this work, one based on map-matching using the weak Fréchet distance and the
other based on a multiscale curve matching into the minimum spanning tree of the
graph computed from the input image edges.

Our initial results indicate that both matching methods perform reasonably well,
clearly matching two of our three initial tests to the correct image. The algorithms
are reasonably efficient, although the map-matching approach is more computation-
ally intensive due to the exhaustive set of rotations and transformations that must be
tested. Testing on a larger database than our three-object set is required to determine
the full power of these methods.
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2 Background

2.1 The medial axis

The medial axis of an object is the set of points which have more than one closest
point on the object’s boundary. It was first introduced by Blum as a tool for rec-
ognizing shapes in biological images [6]. It is known that the medial axis has the
same homotopy type as the original shape [17], and therefore it gives a topologi-
cally accurate but simpler representation of the shape of an object. In addition, the
geometry of the boundary curve is encoded in the geometry of the medial skeleton
and its radius function. The medial axis transform is the set of points in the medial
axis annotated with the radius of the largest inscribed ball centered at each point.
This structure can be used to recover the entirety of the original shape. Applications
and algorithms using this structure are numerous; see for example the survey by
Leymarie and Kimia and the many other references in [16].

2.2 Shape recognition using the medial axis

One of the main motivations for this work is the fact that medial-axis based struc-
tures such as the shock graph have had notable success with the problem of image
recognition among a large database [26, 23, 24]. Each of these algorithms catalogs
a set of canonical shape categories by computing the shock graph (an annotated
version of the medial axis) for each of the shape instances. The next step is to read
input images and attempt to match the shock graphs of the input images against the
library of known shapes. These algorithms are based on dynamic programming, and
work efficiently since the shock graph is a tree whenever the input shape is simply
connected.

Another line of research motivating our work does not use the entire structure
of the medial axis, but instead does the matching strictly based on the longest path
in the medial axis and its associated radius function. Bai et. al [3] implemented
and tested on a library of shapes containing 56 images total, with 4 objects per
shape class [2]. Their approach of removing a shape from the library and testing to
get the correct classification resulted in a success rate of 98.2%. In addition, they
implemented and tested their method on a larger dataset [23] with 94.4% accuracy.

Although this matching is naturally less successful for images with high radial
symmetry, they nonetheless successfully match input shapes to the correct class for
the vast majority of tested images. This is perhaps surprising, given how much rich
information about the medial axis is lost when only considering the single longest
path. However, the work has so far been applied only to catalogs of images with
hand-drawn, clean contours. In this paper, we apply a related method to recognize a
shape contained in an arbitrary (noisy) input image.
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2.3 Map-matching

Given a graph G embedded in Euclidean space R? (most often R?) and a polygonal
curve ¥ also embedded in R?, the map-matching problem asks for the path in G
which is closest to 7y, generally under some distance measure such as the Fréchet
distance or weak Fréchet distance. Recently, this problem has been considered in
both theoretical and applied settings due to its utility in GIS applications [1, 7, 8].
In this setting, one often has a trajectory (such as is given by a GPS unit placed in
a vehicle) which needs to be matched to the closest path on a known road network,
modeled as the graph G.

Our setting is slightly different: although the graphs we work with are extracted
from images and thus have embeddings in R?, our input paths are not embedded in
the same frame of reference since the scales and orientations of the arbitrary input
images can be quite different from the reference images from the library. This vari-
ation is somewhat similar to the notion of a graph isomorphism, but here, our input
graphs are geometric graphs rather than arbitrary ones. While fast algorithms for
Fréchet distance to a geometric graph have been looked at in some limited settings,
such as for trees [12], no one previously has considered the problem where the input
path is not given as an embedding into the same frame of reference as the graph G,
which adds considerably to the difficulty of the problem.

We perform map-matching via the weak Fréchet distance. Let 71,7 : [0, 1] — R?
be two curves in the plane. The weak Fréchet distance 6,7 between them is defined
as:

Sur(v1,72) = inf - max [[yi(au (1)) — a0 (1)),
oy,0:(0,1]—(0,1]£€[0,1]

where a; and @ range over all continuous reparametrizations with o (0) = a2 (0) =
0 and a;(1) = op(1) = 1, and ||.|| denotes the Euclidean norm. The weak Fréchet
distance is a well-suited distance measure for comparing curves as it takes into ac-
count the continuity of the curves. In our setting, we consider the set 7 of trans-
lations, rotations, and scalings. And the related map-matching problem that we ad-
dress is to find for a geometric graph G, a curve ¥, and any admissible transformation
T € 7, the path in G that minimizes the weak Frechet distance to any 7'(y).

2.4 HY 2_type multiscale curve metric

Our other method of matching an input path into a geometric graph is via the H'/2
multiscale curve metric, first introduced in [20], evaluated on a curve extracted from
the graph and the known longest medial path. The last decade has produced a sub-
stantial body of work on finding shape metrics that respect the underlying geometry
of shape space, where a shape is modeled as a curve in R? possibly modulo a group
of transformations [25, 19, 14]. Unfortunately, these metrics are computationally
expensive and can be unwieldy to implement in any realistic setting. The H'/?-type
metric is a middle-ground: a weakened linearization of a Riemannian metric that



Skeleton-based recognition of shapes in images via longest path matching 5

is computationally fast. In other words, it computes distances based on geometric
quantities whereas the Fréchet distance does not.

For ease of exposition, results here are given for plane curves as objects in C
instead of R?. We trust the reader can move naturally between these two represen-
tations. Given a smooth arclength-parameterized open plane curve ¥(s), define an

H'/2 “norm™ as:
) L rmin(s,L—s) )
= [ [ Bl
2 Jo Jo

where L is the length of the curve, and the angle f(s,z) between the rays joining
v(s) to y(s+1¢) and y(s —1t) is given by:

Y(s+1) = ¥(s)

Plst)=are Gy

Moreover,  gives rise to a metric on curves. Let X be the set of homeomor-
phisms o : [0,1] — [0,1] and ¥1, > be Lipschitz curves. Then:

L) = inf, [ [ (Bi(s.) = Ba(o(s).0))? ds

gives the metric:
dz(,y] y /}/2) = L(Yl ) ,YZ) +L(7/2, N )

For a discretized curve sampled over dyadic intervals, we have:

- N-2k1 g .k
vl =) Y Bk,
S p=142klk=1

where N is the number of sampled points, K determines the maximum number of
dyadic intervals, and the angle f3 is:

Y(n+21) —y(n)
y(n) —y(n—2k-1)"

If v is an arclength parameterization of a Lipschitz graph, then the angles f3(n, k)
are, in a distributional sense, the same as the wavelet coefficients of y over the same
dyadic interval system. In this way, the collection of angles {f(n,k)} provides a
multiscale analysis of the curve ¥ and, in turn, the Haar coefficients of ¥ provide a
fast computation for {f(n,k)} based on scaled second differences:

B(n,k) = arg

N-2k1 g N-2k1 g

Y YBmk2E= Y Y (v -2y v -24) 27 ()

n=1+2k-1k=1 n=1+2k-1k=1

9 We are not viewing the space of plane curves as linear, but the integral defined is analogous to
Sobolev norms on function spaces and the integrand is analogous to a wavelet decomposition of .
Additionally, the “norm” gives rise to a metric on curves in the standard way.
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If 7 and 7, are sampled by M < N points, respectively, then ¢ : {1,...,M} —
{1,...,N} and scales are limited by K < log, M and we obtain the discrete approx-
imation to the continuous metric:

M-2k1 g

Lnm)~ min %Y plBim k)~ Balolm). k)

MN =12k k=1

which in turn can be computed using second differences as above.

The metric as defined is naturally translation invariant. In the discrete case, rota-
tion invariance is introduced by rotating the line joining y(n +2¥) and y(n — 2¥) to
be horizontal (a coarse approximation to the tangent line at y(n)) and scale invari-
ance is introduced by normalizing the average inter-point distances to be one. See
[20] for details and full generality of results.

3 Method

3.1 Extracting medial axes from “known” images

In general, the medial axis of an object in a natural image is difficult to extract au-
tomatically, as it requires segmenting the image, extracting the points on the bound-
ary of the object of interest, then computing the medial axis. We select three image
databases with known segmentability: whale flukes, strawberries, and dancers. We
use k-means clustering to extract an initial binary representation of the object of in-
terest, then apply morphological techniques to obtain a clean boundary. We extract
the centers and radii of the circumcircles of the Delaunay triangulation of the bound-
ary points and retain only those centers and radii corresponding to the interior of the
object, thereby obtaining the interior medial axis. See Figure 1 for an illustration of
this process. For more details on this process, see [15].

(©

Fig. 1: Intermediate steps for extracting the medial axis from the whale image. The original image
can be seen in Figure 6. Images above are (a) the initial cluster containing the whale fluke resulting
from k-means clustering, (b) the segmented whale fluke after morphological processing, and (c) the
resulting boundary points. The medial axis with longest path resulting from the boundary displayed
here can be seen in Figure 2(e).
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To extract the longest path within the axis, we apply Dijkstra’s algorithm to find
the point P on the axis that is farthest from a randomly selected medial point, then
repeat Dijkstra’s algorithm to find the medial point Q farthest from P. Retracing
steps from Q to P generates the sequence of medial points along the longest path in
the medial axis. See Figure 2 for an illustration of this process on our 3 test images.

)

J

Fig. 2: Top row: Voronoi vertices with longest path highlighted. Bottom row: Medial skeletons
with longest path highlighted. These longest paths are shown matched to one another in Figures 12
- 14.
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3.2 Extracting Voronoi edges from ‘“unknown” input images

( H

Smoothed Giraffe Torbreck Smoothed Torbreck

Fig. 3: Examples of smoothed images.

Fig. 4: Results of edge detection on smoothed images of a giraffe and a bottle.

Given an input image, we smooth it as in [21]. See Figure 3. Let f denote the
noisy input image and u the denoised (smooth) version. We obtain # by minimizing
the energy:

E(u):/g(f—u) dx+/1/9|w\dx, @)

where Q denotes the image domain and A € R+ a weighting factor. The first term
ensures that u is similar to f and the second term forces u to be smooth everywhere
except at strong edges.

Next, we run a line segment detector (LSD) algorithm [11] on the smoothed ver-
sion in order to extract prominent edges and thus a likely boundary of a shape. LSD
locally detects straight contours on the image, giving subpixel results while con-
trolling the number of false detections per pixel. Contours are naturally defined by
the image gradient and level lines of the image which divide the transition region
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from dark to light or the opposite. The algorithm works by finding the unit vectors
tangent to the level lines, thus computing the level line angle at each pixel. The re-
sulting vector field is then segmented into connected regions that share the same
level line angle up to a threshold. Each connected region is represented by a geo-
metrical object such as a rectangle. The principal axis of this object defines the main
direction which is chosen as the line segment.

(2)

Fig. 5: Removing “outlier” medial points for giraffe image. (a) Original image with all medial
points, followed by the resulting images after (b) dilation, (c) erosion, and (d) point deletion. (e)
Final image with remaining medial points.

The output is a set of edges with noise, as in Figure 4, which we process into a
Voronoi diagram to extract potential medial points. In doing so, we remove “outlier”
medial points (including points in the region external to the shape) by a dilation and
erosion process, as depicted in Figure 5. That is, we first thicken the medial points
to form many connected point clusters and subsequently erode them (while still
maintaining connected structures). We then identify and delete all point clusters in
the processed image of a sufficiently small area, and/or those points that are greater
than a certain small distance away from the largest connected structures in the im-
age. We then compare the resulting image with the original input image and delete
all medial points in the input image corresponding to deleted points in the processed
image, yielding the desired image without outliers.

Next, our objective is to match the single longest path from each of our initial
image instances into the graph which, in each case, approximates the medial axis
of the shape that is present in each input image. We pursue this problem in two
different ways as outlined in the following two subsections.

3.3 Matching via weak Fréchet distance

Our first method of matching is based on map-matching via the weak Fréchet dis-
tance. The related map-matching problem is to find for a geometric graph G and a
curve Y a path in the graph that minimizes the weak Fréchet distance to 7. For a
polygonal curve y with n vertices and a graph G with a total number of m edges and
vertices, the map-matching problem can be solved in O(mnlog(mn)) time [27]. This
algorithm constructs a “free space graph” which is essentially a combinatorial rep-
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resentation of the product space of (parameterizations of) the curve and the graph.
Each vertex-edge pair is assigned a weight that equals their Euclidean distance, and
then a shortest path algorithm in this “free space graph” (where the length of the
path is computed as the maximum of the weights) computes a path with minimum
weak Fréchet distance. Please see [27] for more details.

In our setting, we consider the set .7 of translations, rotations, and scalings.
And the related map-matching problem that we address is to find for a geometric
graph G, a curve 7, and any admissible transformation 7' € 7, the path in G that
minimizes the weak Frechet distance to any 7'(y). We sample .7 by applying a fairly
exhaustive set of scalings, translations, and rotations to the curve, and for each such
transformation we run the map-matching algorithm of Wenk et al. [27]. In particular,
we sample the transformation space as follows: We consider rotations by 0, 90,
180, and 270 degrees. We hold the aspect ratio constant and apply a single scaling
factor; the maximum scaling factor is determined such that the width of the (possibly
rotated) path equals the width of the graph, and the minimum scaling factor is chosen
to be half the maximum factor; this range is sampled in steps of 0.2. The two-
dimensional translation space is determined to consist of all translations such that
the bounding box of the (possibly scaled and rotated) path fits entirely inside the
bounding box of the graph; the translation space is sampled in steps of 10 pixels. As
described in Section 4, the dimensions of each bounding box are several hundred
pixels by several hundred pixels. The resulting range of scales where between 1 and
2.4 for the strawberry, between 0.38 and 0.78 for the whale fluke, and between 0.6
and 1.2 for the dancer. We note that this method is computationally intensive for
each example, involving multiple tests for different possible orientations and sizes
of the path.

3.4 Matching via an H'/ 2.type metric

Our second method of matching addresses the fact that the Fréchet based algo-
rithm described in Section 3.3 is especially difficult because the input medial axis
graph can be quite noisy and messy depending on how well our edge detection and
smoothing algorithms are able to isolate prominent shapes. Additionally, the second
method applies a metric that is invariant under Euclidean motion.

We first simplify the Voronoi graph to a tree to avoid cycles when computing
the longest path in the graph. We choose the minimum spanning tree because it
appears to capture the prominent shape features quite well, though other ways of
simplifying the input graph may be worth investigating. Note that in converting the
graph to a tree we may lose segments on the longest path. Suppose 7; is a discrete
representation of the longest path in the medial axis of a known object, and we are
given the Voronoi edges from an unknown image. Our method is as follows, with
curve matching running in O(MNlog M) time:

1. Compute the minimal spanning tree for the Voronoi edges.
2. Extract 75, the longest path in the Voronoi tree.
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Resample 7 and 7, to have N = M = 128 equally spaced points.

Normalize scale so that each curve has an average inter-point distance of one.

Compute second differences as described in Equation 1.

Extract second differences corresponding to every fourth point on y; to allow for

flexible point matching (otherwise the points are matched one-to-one in order),

following the procedure outlined in Section 2.4.

7. Apply dynamic programming to find the matching of points of ; to 9» that min-
imizes the distance d”(y,7% ) between the curves.

8. Sum scaled second differences corresponding to the optimal matching to obtain

approximation to d*(y1, 7).

AR

4 Results

The three images we use are of a strawberry, a whale fluke, and a dancer. Here we
match the medial axis extracted as described in Section 3.1 to the Voronoi diagram
of the same image extracted as described in Section 3.2. The dimensions of the
bounding boxes of the Voronoi diagrams are 479 x 367 for the strawberry, 618 x 418
for the whale fluke, and 540 x 239 for the dancer. Results from the two matching
methods are comparable, and both seem promising.

Fig. 6: Input images: a strawberry, a whale fluke, and a dancer.

4.1 Weak Fréchet map-matching distance results

For the dancer and the whale fluke, the transformation that minimized the weak
Fréchet distance over all sampled transformations was found correctly, see Figures
8 and 9. The point matching computed by the weak Fréchet distance also appears to
be of good quality. The distance for the minimum transformation computed for the
dancer is so small (2.5 pixels), that the transformed dancer path and the resulting
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Fig. 7: Results of edge detection: (a) strawberry, (b) whale fluke, and (c) dancer.
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Fig. 8: Matching the dancer path into the dancer graph. The graph edges are shown in light gray,
and the path is shown in green. The algorithm finds the correct transformation with minimum
Fréchet distance 2.5 pixels (at scale 1.0 with no rotation). The transformed path is shown in black,
and the corresponding path in the graph in blue.

matched path in the graph almost coincide. For the whale fluke, the minimum com-
puted transformation (11.2 pixels) is very close to the transformation with the third
smallest distance of 11.6 pixels which applies an additional 180 degrees transforma-
tion to the whale path. For the strawberry, the path is found for multiple small scales
at multiple positions at small distances (ranging between 8.1 to about 13) in the
graph, see Figure 8. Out of the 4,368 sampled transformations per sampled scale,
9.2% of the transformations at scale 1.0 have a distance less than 15. At scale 1.2,
this reduces to 5.5%, and at scale 2.0 this reduces to only 0.07%. We believe that
this is an artifact caused by the almost grid-like dense edge pattern in the strawberry
graph in combination with the very straight shape of the strawberry path.

We also compared the dancer path to the strawberry graph, the whale fluke graph,
and the dancer graph. We computed the minimum weak Fréchet distance over all
sampled transformations. The computed minimum distances were 8.9 pixels for the



Skeleton-based recognition of shapes in images via longest path matching 13

450

350

300
1000
900

800
200

700

600
150~

500

400 100
300
N /—\ ol
100
ok
o 200 400 600 ; 5 ; ; ; ;
100 200 300 400 500 600

Fig. 9: Matching the whale path into the whale graph. The graph edges are shown in light gray, and
the path is shown in green. The algorithm finds the correct transformation with minimum Fréchet
distance 11.2 pixels (at scale 0.6 with 90 degrees rotation). The transformed path is shown in black,
and the corresponding path in the graph is blue. The red lines show the optimal point matching.
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Fig. 10: Matching the strawberry path into the strawberry graph. The algorithm finds too many
occurrences of the path at a small scale. The graph edges are shown in light gray, and the path is
shown in green. Results are shown for the minimum distance (8.1) at scale 1.0 (with a rotation
of 180 degrees), the minimum distance (8.9) at scale 1.2 (with a rotation of 270 degrees), and the
minimum distance (13.4) at scale 2.0 (with a rotation of 180 degrees). The transformed path is
shown in black, and the corresponding path in the graph in blue.

strawberry graph, 9.7 pixels for the whale fluke graph, and 2.5 for the dancer graph.
The dancer path therefore correctly determined the dancer graph as the graph it
matches best with, see Figures 8 and 11.
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Fig. 11: Matching the dancer path into the strawberry graph (distance 8.9) and into the whale fluke
graph (distance 8.7). Both distances are larger than the distance into the dancer graph (2.5), see
Figure 8.

4.2 H'/? metric results

Initial results for matching the medial longest path to the Voronoi tree longest path
are correct for the two instances where the longest Voronoi path contains the desired
medial points. Apart from the strawberry image, where the Voronoi tree longest path
fails to contain edges belonging to the medial axis of the strawberry, the closest
match corresponds to the correct classification. In addition, the optimal matching
between points performs reasonably well. See Figures 12 - 14. Note that the scale
of the curves has changed. This is because of the scale invariance we introduced by
normalizing inter-point distances to be one.

Distance = 1.551 Distance = 1.749 Distance = 2.687
3 . 55
5
45
4
35
3
25
2
15

(C) -1 0 1 2 3 4

(@)

Fig. 12: Matching medial longest path from (a) whale (distance = 1.551), (b) dancer (distance =
1.749), (c) berry (distance = 2.687) into the Voronoi tree longest path of the whale fluke. Lines
show the optimal point matching. The minimum distance into the messy graph correctly classifies
the unknown image as a whale.
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Fig. 13: Matching medial longest path from (a) whale (distance = 1.424), (b) dancer (distance =
1.314), (c) berry (distance = 2.602) into the Voronoi tree longest path of the dancer. Lines show
the optimal point matching. The minimum distance into the messy graph correctly classifies the
unknown image as a dancer.

Distance = 1.473 Distance = 1.474 Distance = 2.422

(a) -05 0 05 1 15 2 25 3 (b)

Fig. 14: Matching medial longest path from (a) whale (distance = 1.473), (b) dancer (distance =
1.474), (c) berry (distance = 2.422) into the Voronoi tree longest path of the strawberry. Lines show
the optimal point matching. The minimum distance into the messy graph incorrectly classifies the
unknown image as a whale. Note that the longest path in the Voronoi tree for the strawberry image
does not contain any edges from the medial axis of the strawberry itself.

5 Discussion and Future Directions

Our matching techniques show enough promise to merit additional investigation.
We are curious about the success of the algorithms when the Voronoi diagram is
dense or grid-like, or where the longest path in the medial axis does not trace a
prominent shape feature (such as when the input image is nearly round with radial
symmetry).

5.1 Analysis of the weak Fréchet map-matching distance

Sampling the transformation space to minimize the weak Fréchet map-matching
works well for the dancer and the whale fluke. The strawberry graph exhibits a
grid-like dense edge pattern which causes the strawberry path to be found in many
locations in the graph, in particular for small scales. While this behavior is extreme
in the strawberry, it is also present in the whale fluke data, where the path with the
second smallest distance is located at a different location with an additional 180
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degrees rotation. We believe that the “small scale” problem could be overcome by
analyzing the distribution of distances for fixed scale and varying translations and
rotations, in order to identify transformations with significant distances. We will
investigate this direction in future research.

For the dancer path, the distance into the dancer graph was much smaller than
into the strawberry graph and the whale fluke graph. The minimum weak Fréchet
distance into the messy graph therefore correctly classifies the unknown image as a
dancer.

5.2 Analysis of the H 1/ 2_type metric

Matching longest paths using the H'/?-type metric performs well for the two cases,
whale and dancer, where the longest path in the Voronoi tree contains edges cor-
responding to the medial axis of the object of interest. Not surprisingly, it fails for
the third image, the strawberry, where no medial edges appear in the Voronoi tree
longest path. The strawberry image is particularly challenging, as the berry itself
contributes very few edges to the very complicated edge map seen in Figure 7(a)
and contains several spurious edges in its interior. This illustrates the need for an
additional evaluation of relative importance of Voronoi vertices, perhaps through
classification of vertices as belonging to the foreground or background or noise.

In addition, the optimal matching of points between the two longest paths cur-
rently seems to favor matches that map the medial path into the length of the Voronoi
path. For example, in Figure 12 the medial axis for the whale in the Voronoi path
starts at about the halfway point whereas the optimal matching begins at the left of
the path. Because the optimal matching can skip enough points to avoid highly mis-
matching segments, it seems likely that a longer match will often be lower cost for
medial curve matching. At the same time, two curves that are identical up to a point
can correspond in a match that is too short. Figure 15 illustrates this issue. For the
larger scales, the differences in the 8 angles (and their second difference approxima-
tions) will grow as the points on the circles approach the points on the line. Hence
the lowest cost match avoids points toward the end of the circle attached to the line.
Penalizing skips that are longer than an average skip, or adding the difference in the
radius function values to the cost of matching two points may improve the medial
point correspondence.

5.3 Future work

Our initial proof of concept for this approach is promising. Based on our results and
prior work in this area [3], we speculate that this approach will also work well to
capture the same shape in a different pose (such as a dancer in different positions).
Future work will consider a larger library of shapes as well as input images in differ-
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Fig. 15: Matching a semicircle into a curve composed of the union of a semicircle and a line.
Instead of matching semicircle to semicircle, the semicircle is matched to points away from the
line.

ent poses. There is also potential to include the radius function as well as the longest
path for improved recognition results, but it is not clear if the Voronoi graphs from
input images will prove too noisy to reliably calculate this information.

Both approaches perform better with a simpler Voronoi graph. We are currently
exploring methods for evaluating the saliency of either a particular Voronoi vertex
or (equivalently) an edge pair associated to a Voronoi vertex. In addition, both ap-
proaches would benefit from using the information in the radius function on the
medial and Voronoi points that gives the distance to the corresponding edge points.
We anticipate substantial improvement from the combination of these modifications.

We also hope to reduce the cost of learning additional shape classes once a suf-
ficient number of classes have been learned. Learning the visual models for clas-
sification of test objects requires a significant number of training samples. In the
method of one-shot learning [9], the information from previously learned categories
is used for training new categories, using a Bayesian prior and maximum a poste-
riori (MAP) estimation. This model could be used to optimize and extend learning
for the current methods.
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