
Map-Matching Using Shortest Paths
Erin Chambers

Department of Computer Science

Saint Louis University

Saint Louis, Missouri, USA

erin.chambers@slu.edu

Brittany Terese Fasy

School of Computing and Dept. Mathematical Sciences

Montana State University

Montana, USA

brittany@cs.montana.edu

Yusu Wang

Department of Computer Science and Engineering

The Ohio State University

Columbus, Ohio, USA

yusu@cse.ohio-state.edu

Carola Wenk

Department of Computer Science

Tulane University

New Orleans, Louisianna, USA

cwenk@tulane.edu

ABSTRACT
We consider several variants of the map-matching problem, which

seeks to find a path Q in graph G that has the smallest distance to

a given trajectory P (which is likely not to be exactly on the graph).

In a typical application setting, P models a noisy GPS trajectory

from a person traveling on a road network, and the desired path Q
should ideally correspond to the actual path in G that the person

has traveled. Existing map-matching algorithms in the literature

consider all possible paths inG as potential candidates for Q . We

find solutions to the map-matching problem under different set-

tings. In particular, we restrict the set of paths to shortest paths, or

concatenations of shortest paths, inG. As a distance measure, we

use the Fréchet distance, which is a suitable distance measure for

curves since it takes the continuity of the curves into account.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis;

KEYWORDS
shortest paths, Fréchet distance, map matching

ACM Reference Format:
Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. 2018.

Map-Matching Using Shortest Paths. In IWISC 2018: 3rd International Work-
shop on Interactive and Spatial Computing, April 12–13, 2018, Richardson, TX,
USA. ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/

3191801.3191812

1 INTRODUCTION
The map-matching problem seeks to find a path Q in a planar

graph G = (V ,E) that has the smallest distance to P . In a typical

application setting, P models a noisy GPS trajectory from a person

traveling on a road network, modeled as the planar graphG , and the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IWISC 2018, April 12–13, 2018, Richardson, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5439-4/18/04. . . $15.00

https://doi.org/10.1145/3191801.3191812

desired path Q should correspond to the actual path in G that the

person has traveled. Map-matching algorithms in the literature [1,

2, 6] consider all possible paths in G as potential candidates for Q ,
and apply similarity measures such as Hausdorff or Fréchet distance

to compare input curves.

We propose to restrict the set of potential paths inG to a natural

subset: those paths that correspond to shortest paths, or concatena-

tions of shortest paths, in G. Restricting the set of paths to which

a path can be matched makes sense in many settings. In particu-

lar, vehicles often follow routes computed by a navigation system,

which often prefers certain types of routes over others; and drivers

often have preferences for different roads [7]. The current literature

also does not consider the case where the vehicle makes multiple

stops. For example, consider a person running several errands in

one trip, where we are given the approximate path that the person

followed, along with the underlying map. In this setting, knowledge

of the number of stops as well as the type of path preferred (shortest

travel time, shortest distance, or perhaps avoiding certain types of

roads) can improve the final quality of the path that our algorithm

matches to in the graph.

Related work. Map-matching is widely used in practice, e.g., to

establish fast routes or points of interest from a large set of trajec-

tories [17, 18]. Common approaches include the use of Fréchet dis-

tance variants [2, 6], incremental methods [6, Sec. 3], matching low-

sampling-rate trajectories using spatial-temporal constraints [12,

15], and hidden Markov models [13, 16]. Despite this, only few

map-matching algorithms provide quality guarantees.

Only a small proportion of prior work considers restricting the

set of paths in G. Instead, common practice reduces the space of

paths by cropping G inside an ε-neighborhood around P before

applying a general map-matching algorithm. Gheibi et al. [9] gave

a map-matching algorithm that minimizes the sum of the lengths

of walks on P andQ within some Fréchet distance. Their algorithm

runs in O(Nm(N +m) log(N +m)) time and O(Nm(N +m)) space,

where n = |V |,m = |E |,N = |P |, and computes a shortest path in

a discretized free space. Finally, Zhu et al. [20] consider a similar

notion as the one we study here, and break a longer path in order to

map each subsegment to a short path; however, the curve matching

https://doi.org/10.1145/3191801.3191812
https://doi.org/10.1145/3191801.3191812
https://doi.org/10.1145/3191801.3191812

IWISC 2018, April 12–13, 2018, Richardson, TX, USA E. Chambers et al.

is done via a “Longest Common Subsequence" score, incorporat-

ing Hausdorff like similarity measures, and does not guarantee

absolutely shortest paths for each sub trajectory matched.

Our contribution. We provide algorithms for variants of the

map-matching problem, in which the set of paths are restricted to

shortest paths, or concatenations of shortest paths, in the graph
1
.

As a distance measure between paths, we use the Fréchet distance,

which is a standard distance measure for curves in this setting that

produces better matchings than some others, such as the Hausdorff

distance, since it takes the continuity of the curves into account.

In Section 3, we provide an algorithm to match P to the short-

est possible path within a given Fréchet distance in G. We prove

properties of a distance function on the free space and we com-

pute it incrementally, which allows us to use less space than [9].

In Section 4, we give algorithms to match P to concatenations of

shortest paths in G: In the min-k variant, we find a path Q in G
consisting of the smallest number k of shortest path pieces that

does not exceed a given Fréchet distance. In the min-ε variant, we
find a pathQ inG consisting of at most k shortest paths, for given k ,
such that the Fréchet distance to P is minimized. We assume that all

break-points between shortest paths lie on vertices of G and map

to vertices of P . In Section 5, we relax this constraint on the break-

points, and provide approximation algorithms that approximate

the number of shortest path pieces as well as the Fréchet distance ε
when break-pointscan lie in the interior of edges in G and can be

mapped to the interior of edges of P .
To the best of our knowledge, we present the first study of

Fréchet-based map-matching algorithms that consider a subset

of paths with pre-defined properties in G to be matched to P . Our
paper expands this new perspective on map-matching and provides

further theoretical foundations for the practically relevant problem,

where we consider a restricted set of path classes.

2 PRELIMINARIES
Let G = (V ,E) be a geometric graph where each node in V is

embedded in the Euclidean space, and each graph edge is mapped

to the segment connecting its two nodes. Let P be a polygonal path.

We parameterize each (undirected) edge e = (u,v) ∈ E linearly

by e(s) := (1 − s)u + sv for s ∈ [0, 1], where the direction of the

parameterization is fixed, but arbitrary. Let p0,p1, . . . ,pN be the

sequence ofN+1 vertices defining the polygonal path P . We identify

each of these vertices with a point in the plane, and we parameterize

each line segment edge ei = (pi ,pi+1) linearly by pi (t) := (1−t)pi +
tpi+1 for t ∈ [0, 1]. We use P[pi ,p] to denote the polygonal subpath
from pi to some other point p ∈ P .

The length of a path or subpath, either in G or P , is simply the

sum of all edge-lengths in the path; in the case of partial edges,

we use the fact that we have an arc length parameterization of all

edges, and take the arc length of the partial edge.

We are interested in finding a path in G that is close to an

input path P . To measure this closeness, we use the Fréchet dis-

tance [8]. Consider any two curves α , β : [0, 1] → R2. Let ϕ
and ψ be orientation-preserving homeomorphisms that serve as

1
We note that while it has been recognized that factors other than purely shortest

distances may affect how people choose routes (see e.g [21]), many advanced models

still rely heavily on the shortest path assumption e.g., [4, 5, 11, 14, 19]

Figure 1: We illustrate the parameter space G × P , a graph G
(shown in red with white vertices) times a path P of length
four. For convenience, the path is drawn as a straight path.
A slice is the graph cross an edge e of the path:G × e; see the
shaded pink region. A level is the graph cross a vertex v in
the path: G ×v. Each level can be thought of as a copy of G.

reparameterizations of [0, 1]. We can measure the distance be-

tween (α ◦ ϕ) and (β ◦ ψ) pointwise, and take the supremum.

Then, the Fréchet distance δF (α , β) is defined to be the infimum of

this measurement over all reparameterizations ϕ andψ . Formally:

δF (α , β) = infϕ,ψ sups,t ∈[0,1] | |(α ◦ ϕ)(t) − (β ◦ψ)(t)| |. Intuitively,
one can imagine a man walking along one curve and a dog along the

other, continuously from beginning to end without backtracking.

Then, the Fréchet distance is the shortest leash needed to connect

the man and dog on their walk.

In order to match the path to the graph, we consider the cell com-

plexG × P ; see Figure 1. By convention, we say that the graphG =
(V ,E) is horizontal and the path P is vertical. For an edge (u,v) ∈ E
and consecutive path vertices pi and pi+1, we consider the cell

(u,v) × (pi ,pi+1) ⊆ G × P to be drawn with (u,v) as a horizontal
edge and (pi ,pi+1) as a vertical edge, as shown in Figure 2. A slice
is the graph G cross an edge (pi ,pi+1) of the path, G × (pi ,pi+1),
and a level is the graph cross a vertex pi of the path, G × pi .

For ε > 0, the corresponding free space diagram Dε is the subset
ofG × P such that for all pairs (д,p) ∈ Dε , the following inequality

is satisfied: | |д−p | | ≤ ε . The free space of a cell is equal to an ellipse

intersected with the cell [3]. As a consequence, equality | |д−p | | = ε
holds for at most two points on each vertical or horizontal edge in

the complex. On a vertical edge u × (pi ,pi+1), we denote these two
points by aiu and biu . Where appropriate, we slightly abuse notation

and use aiu to also identify the parameter t for which pi (t) = aiu . In
this way, we say aiu ≤ biu . Likewise, on a horizontal edge (u,v) ×pi ,
we denote ciu ≤ diu as the points for which | |ciu−pi | | = | |diu−pi | | = ε ;
see Figure 2.

3 SHORTEST AMONG MATCHING PATHS
In this section, we consider only paths in G that have restricted

Fréchet distance to an input polygonal curve, and among those

paths, we wish to find a shortest path. In short, we are interested

in finding the shortest matching path:

Map-Matching Using Shortest Paths IWISC 2018, April 12–13, 2018, Richardson, TX, USA

Figure 2: We illustrate one free space cell (u,v) × (pi ,pi+1),
where (u,v) is an edge in the graph and pi ,pi+1 are consec-
utive points in P . The free space is equivalent to an ellipse
intersecting this rectangle. Therefore, each edge of the rec-
tangle has at most two points (д,p) for which | |д − p | | = ε .

Problem 1 (Shortest Matching Path). Given a parameter ε >
0 and a path P , find the shortest path in G that is within Fréchet
distance ε to P .

Note that the source and destination of such a “shortest path”

may not be graph nodes in G. We provide an incremental algo-

rithm for computing such a shortest matching path. Our algorithm

computes a distance function on all edges of the free space. We

also prove properties of this distance functions which may be of

independent interest.

3.1 Algorithm
Any path Q in G with δF (P ,Q) ≤ ε corresponds to a P-monotone

path π in free space Dε ⊆ G × P . A shortest such path Q then cor-

responds to a shortest P-monotone path π in Dε , where the length
of π is only measured alongG , i.e., in the horizontal direction. Our

algorithm follows a dynamic programming approach that combines

the computation of paths in the free space diagram with shortest

path computations.

We define a function φ : G × P → R such that φ(д,p) =
minQ |Q |, where Q ranges over all paths in G ending at д such

that δF (P[p0,p],Q) ≤ ε , and |Q | denotes the length ofQ . If no such

path to (д,p) exists, then φ(д,p) = ∞. In particular, φ(д,p) = ∞ for

(д,p) < Dε . We have that φ(д,p) = minπ |π |, where π ranges over

all P-monotone paths in Dε that end at (д,p), and the length |π | is
measured alongG only. We call π aG-shortest path, or shortest path
for short. Thus, φ captures the length of G-shortest paths in free

space. Our algorithm computes φ slice-by-slice overG ×P , with the

goal to compute φ(д,pN) for some д ∈ G . Observe that aG-shortest
path π has to be monotone in each cell ofG×P . Therefore, it suffices

to compute φ on the vertical and horizontal edges ofG × P . In each

slice of G × P , we perform a Bellman-Ford inspired computation

to propagate φ between the vertical edges by relaxing along the

horizontal edges.

For a vertical edge defined by v ∈ V and an edge (pi ,pi+1) of
the path, let φv,i (t) : [0, 1] → R be defined by φv,i (t) = φ(v,pi (t)).
For a horizontal edge defined by e ∈ E and a vertex pi of the path,
let φe,i : [0, 1] → R be defined by φe,i (s) := φ(e(s),pi). Note that
for each (undirected) edge (u,v) ∈ E, we only store one φ-function,
say, φ(u,v),i (s), since φ(v,u),i (s) = φ(u,v),i (1 − s).

Algorithm 1: Shortest Among Fréchet-Matching Paths

1 Initialize φv,i (t) = φe,i (s) = ∞ for all v, e, i, s, t .

2 forall v ∈ V with | |v − p0 | | ≤ ε do
3 φv,0(0) = 0

4 forall e ∈ E and s ∈ [0, 1] with | |e(s) − p0 | | ≤ ε do
5 φe,0(s) = 0

6 for i = 0, . . . ,N do // Compute slices
7 forall v ∈ V and t ∈ [0, 1] with | |v − pi (t)| | ≤ ε do

// Initialize vertical edges
8 φv,i (t) = min{φv,i (a

i
v),

min

u ∈Adj(v)
min

s ∈[0,1]
{φ(u,v),i (s) + (1 − s)| |u −v | |}}

9 while there exist edges e ∈ E to be relaxed do
// Compute vertical edges in slice i

10 forall e = (u,v) ∈ E and t ∈ [0, 1] do
// Relax edge e (both directions)

11 φv,i (t) = min{φv,i (t),

φu,i (max{t ,aiv }) + | |u −v | |}
12 φu,i (t) = min{φu,i (t),

φv,i (max{t ,aiu }) + | |u −v | |}

13 forall e ∈ E do
// Compute horizontal edges in level i + 1

14 Compute φe,i+1(s) according to Lemma 3.3.

Lemma 3.1 (Vertical Monotonicity). The function
φv,i (t) is monotone non-increasing for t ∈ [aiv ,b

i
v].

Proof. Observe that [aiv ,b
i
v] corresponds to the intersection

of the freespace Dε with the vertical edge. Since φ measures the

length of paths in Dε in the G-direction only, paths can move in

the vertical direction without increasing in length. �

In particular, we note that a direct consequence of the above

lemma is the fact that the minimum of this edge is attained at aiv :
φv,i (a

i
v) ≤ φv,i (t) for all t ∈ [aiv ,b

i
v].

Our dynamic programming algorithm, Algorithm 1, is based

on the reachability propagation introduced by Alt and Godau to

compute the Fréchet distance [3]. Instead of propagating binary

reachability information from cell to cell, we propagate function

values forφ along vertical and horizontal edges ofG×P . We will see

in Lemma 3.4 and Lemma 3.5 that φ is piecewise linear on a vertical

or horizontal edge. We therefore store each φv,i (t) and φe,i (s) as a
list of linear pieces. Updates such as the ones in lines 8, 11, 12 then

take linear time in the length of the lists. The condition in line 9

is true if there exists an edge e = (u,v) such that φv,i (t) or φu,i (t)
are updated in lines 11 and 12.

3.2 Properties
Algorithm 1 is based on the recursive formulas given in Lemma 3.2

and Lemma 3.3.

Lemma 3.2 (Compute Vertical Edges). Consider a
vertical edge v × (pi ,pi+1) for any v ∈ V and i ∈ {0, . . . ,N }. Then,
for any t ∈ [0, 1], we have:

IWISC 2018, April 12–13, 2018, Richardson, TX, USA E. Chambers et al.

• If | |v − pi (t)| | > ε then φv,i (t) = ∞.
• If | |v − pi (t)| | ≤ ε then φv,i (0) = 0, and for t ∈ (0, 1] :

φv,i (t) = min


φv,i (a

i
v),

min

u ∈Adj(v)
φu,i (max{t ,aiu }) + | |u −v | |,

min

u ∈Adj(v)
min

s ∈[0,1]
{φ(u,v),i (s) + (1 − s)| |u −v | |}


Proof. The first two equalities follow directly from the defini-

tion of φ. To prove the third equality, consider a shortest monotone

path π inDε ending at (v,pi (t)) for some t ∈ [0, 1]. The last segment

of π connects to one of the following:

(1) The bottom-most feasible point, aiv , on the same vertical

edge v × (pi ,pi+1),
(2) a point on a vertical edge u × (pi ,pi+1) for a vertex u ∈ V

adjacent to v , or
(3) a point on a horizontal edge (u,v) × pi for a vertex u ∈ V

adjacent to v .

A shortest monotone path always exists for which this last segment

is a straight-line segment. The three cases correspond to the three

values minimized over in the theorem. Measuring lengths in G,
we observe that vertical paths in Dε have length zero. Hence, the

length of the corresponding path in G in the first case is φv,i (a
i
v),

the lengths in the other cases minimize over all vertices u adja-

cent to v , and the value φv,i (t) is the minimum of these three

lengths. In the second case, the projection of π onto G traverses

the entire edge (u,v), which contributes length | |u −v | |. The third
case minimizes over all possible connections to the horizontal edge

e × pi where e = (u,v). A segment connecting (v,pi (t)) to a point

(e(s),pi) has length (1 − s)| |u −v | |, assuming e is parameterized by

e(s) = (1 − s)u + sv . �

Lemma 3.3 (Compute Horizontal Edges). Consider
a horizontal edge e × pi+1 for any e = (u,v) ∈ E and i ∈ {0, . . . ,N }.
Then, for any s ∈ [0, 1] we have:

• φe,0(s) =

{
0, if | |e(s) − p0 | | ≤ ε
∞, else

• If | |e(s) − pi+1 | | > ε , then φe,i+1(s) = ∞.
• If | |e(s) − pi+1 | | ≤ ε , then

φe,i+1(s) = min


φu,i (b

i
u) + s | |u −v | |,

φv,i (b
i
v) + (1 − s)| |u −v | |,

min

s ′∈[0,1]
{φe,i (s

′) + |s − s ′ | · | |u −v | |}
(1)

Proof. The first two equalities follow directly from the defini-

tion of φ. It remains to prove the last equality given in Equation (1).

Consider a shortest monotone path π in Dε ending at (e(s),pi+1).
The last segment of π connects to one of the following:

(1) a point on the vertical edge u × (pi ,pi+1),
(2) a point on the vertical edge v × (pi ,pi+1), or
(3) a point on the horizontal edge e × pi .

These cases correspond to the three values minimized over in Equa-

tion (1). By definition, φe,i+1(s) is the minimum of these three

values. In the first case, the last segment of π connects to biu (or

to a point below it on u × (pi ,pi+1) with the same value of φ),
since φv,i (t) is monotone decreasing; the length of this segment

is s | |u −v | |. The second case is analogous to the first case, for the

other vertical edge in the free space cell. The third case minimizes

over all possible connections to the horizontal edge e × pi . A seg-

ment connecting (e(s),pi+1) to a point (e(s
′),pi) has length |s − s ′ | ·

| |u −v | |. �

The following two lemmas will be used to prove correctness of

Algorithm 1 in Theorem 3.6.

Lemma 3.4 (Vertical Function Complexity). Let
v × (pi ,pi+1) be a vertical edge. Then, for t ∈ [aiv ,b

i
v], the func-

tion φv,i (t) is piecewise constant and monotone non-increasing with
complexity O(n).

Proof. If t ∈ [a1v ,b
i
v], then ϕv,i (t) ≤ ϕv,i (a

i
v) since the path

from p(a1v) to p(t) has length zero in G. The endpoints of each

constant piece in φv,i (t) can only be lower endpoints aiu of the free

space on vertical edges u × (pi ,pi+1), for any u ∈ V . Hence, the
complexity is O(n). �

Lemma 3.5 (Horizontal Function Complexity). Let e ×pi be a
horizontal edge. Then, for s ∈ [cie ,d

i
e], the function φe,i is a piecewise-

linear function, where each piece is of slope | |e | |, −||e | | or zero. Note
that such a function is necessarily | |e | |-Lipschitz. Furthermore, the
complexity of φe,i is O(i).

Proof. We prove this claim by induction on i . By definition,

we know that φe,0(s) = 0 for all s ∈ [c0e ,d
0

e]. As a consequence of

Lemma 3.3, we have that φe,i+1 is the lower envelope of a linear
function with slope | |e | |, a linear function with slope −||e | |, and
mins ′∈[0,1]{φe,i (s

′) + |s − s ′ | · | |e | |}. Since, by inductive hypothe-

sis, φe,i is piecewise linear, where each piece is of slope | |e | |,−||e | |
or zero, the minimum of the last term is attained as follows: If

s < cie then s ′ = cie and cie ≤ s ≤ die , then s ′ = s , and if die ≤ s ,
then s ′ = die . Hence, the function φe,i+1 consists of a translated
copy of φe,i with at most two additional linear pieces at each end.

Therefore, we know that φe,i+1 has the desired structure, and its

complexity is O(i). �

We prove the correctness and analyze the runtime of Algorithm 1

in the following theorem:

Theorem 3.6 (Correctness andTimeComplexity). Algorithm 1
computes the length of a shortest matching path inO(N (kmn+mN))

time and O(n2 +mN) space, where k is the number of edges in the
shortest matching path in G.

Proof. For each vertical edgev × (pi ,pi+1) (and each horizontal

edge e × pi), we compute φv,i (and φe,i , respectively). The time for

initialization (lines 1-5) isO(n+m). From Lemma 3.4, we know that

each φv,i has complexityO(n), and from Lemma 3.5, that each φe,i
has complexity O(i). We use these discrete representations of φv,i
and φe,i throughout the algorithm. Since the algorithm computes

one slice at a time, we only need to store φv,i and φe,i for only one

slice. Hence, the total storage complexity is O(n2 +mN).

The correctness of the algorithm follows from Lemma 3.2 and

Lemma 3.3. In particular, lines 7-12 are based on the recursive for-

mula given in Lemma 3.2. All φv,i on vertical edges v × (pi ,pi+1)
are initialized in Lines 7-8 with values from the bottom horizontal

edge. Then lines 9-12 perform a Bellman-Ford shortest path prop-

agation across all vertical edges in slice i . We continue the while

loop in line 9 as long as at least one φv,i (or φu,i) was updated in

Map-Matching Using Shortest Paths IWISC 2018, April 12–13, 2018, Richardson, TX, USA

lines 11-12. Hence, the number of iterations of the while loop is

k + 1 (once the shortest paths are found, no improvements will

be made). After all, φv,i have been computed in slice i , all φe,i+1
are computed from the vertical edges and the horizontal edges in

level i , according to Lemma 3.3. Lines 7-8 take O(n2) time, lines 11-

12 take O(n) time, and line 14 takes O(i) time. Hence, lines 6-14 of

the algorithm take time O(N (n2 + kmn +mN)), and thus the total

runtime is O(N (kmn +mN). �

Remark 1. As stated, Algorithm 1 enforces monotonicity on P but
not on edges of G = (V ,E). If desired, the algorithm can be modi-
fied to enforce monotonicity on the edges in E as follows: The cell
complex would need to be defined using directed edges E ′, where
undirected edges in E are represented using two directed edges. The
propagations according to Lemma 3.2 need to use adjacency lists
Adj(v) = {(u,v) | (u,v) ∈ E ′}. The horizontal propagation in
Lemma 3.3 needs to be adjusted, by replacing equation (1) with
φe,i+1(s) = min{φu,i (b

i
u) + s | |u − v | |, fe,i (s)}. Here, fe,i (s) = 0

if cie ≤ s ≤ die , and fe,i (s) = s − die if die < s . This formula mod-
els monotone propagation in the same way as in Alt and Godau [3],
just that in addition to reachability we propagate the length of a
G-shortest path.

4 MATCH TO CONCATENATION OF
SHORTEST PATHS

In this section, we are interested in matching the path P to a con-

catenation of shortest paths inG. We consider two variants of the

problem, one that minimizes the number of shortest paths that are

concatenated, the other that minimizes the Fréchet distance δF .

Problem 2 (Min-k). Given a parameter ε ≥ 0, find a path Q inG
that is a concatenation of the smallest number of shortest paths in G,
such that δF (P ,Q) ≤ ε .

Problem 3 (Min-ε). Given a parameter k ≥ 1, find a path Q inG
that is a concatenation of at most k shortest paths in G , such that the
Fréchet distance between P and Q is minimized.

In this section, we assume that the paths in G must begin and

end at a vertex. We begin by exploring the case where k = 1 in

Section 4.1, then consider the more general case in Section 4.2 and

Section 4.3. Allowing paths to start or end anywhere on an edge

makes the problem considerably harder. We sketch approximation

algorithms for this case in Section 5.

4.1 Matching to Shortest Paths
As a warm-up, we consider the min-ε problem for the case where

k = 1, i.e., we wish to find a shortest path Q in G that minimizes

the Fréchet distance to P , among all shortest paths inG that start

and end at vertices in V .

First, we compute an implicit representation of all shortest paths

between all pairs of vertices in V , by running Dijkstra’s shortest

path algorithm for each s ∈ V as a source vertex. Shortest paths

with a common start vertex are stored in a shortest path directed

acyclic graph (DAG); note that while algorithms usually assume

uniqueness of shortest paths and store only a tree, we wish to keep

all possible shortest paths since we must store all of them in order

to consider their Fréchet distance to P . The shortest path DAGs are

computed and stored for each s ∈ V as a source vertex, in total in

O(n(m + n logn)) time and O(n2) space.
Then, we need to compute the Fréchet distance between P and

each shortest path, in order to identify the minimum distance. We

batch these computations by computing the Fréchet distance be-

tween a path and the entire shortest path DAGs. The following

lemma and the resulting corollaries show that distances between

shortest path prefixes and prefixes of P can be computed efficiently

in a batched manner. We state these results for a general DAG with

a single root – We note that a more general version of Lemma 4.1

(which is between two DAGs) has already been observed in [10].

We include the proof here for our version for completeness.

Lemma 4.1. Let T = (VT ,ET) be a DAG with a root r and |ET | =
mT . Let P be a polygonal path with vertices p0,p1, . . . ,pN . A path
inT from the root to a leaf, that has the smallest Fréchet distance to P ,
can be computed in O(mTN log(mT + N)) time.

Proof. This is a simple modification of Alt and Godau’s com-

putation of the Fréchet distance for two polygonal paths [3], and

a special case of the map-matching setting considered in [2]. For

fixed ε > 0, we compute the free space inT × P . We then propagate

reachability information from (r ,p0) in dynamic programming fash-

ion in this free space. Starting with filling reachability information

in r × P , we then propagate the reachability monotonically across

both T and P , traversing T in an order determined by a topologi-

cal sort of T , and P from p0 to pN . For each edge (u,v) ∈ ET , the
reachable points in (u,v) × P are computed by straight-forward

propagation from the reachable points in u × P . But since v may

have multiple incoming edges, the reachability information forv×P
is then computed as the union of all the propagated reachability

information for all (u,v) ∈ ET . It takes time and space O(mTN) to

solve the decision problem. With parametric search [2, 3], the path

in T from the root to a leaf, that has the smallest Fréchet distance

to P , can be found in O(mTN log(mT + N)) time. �

For fixed ε > 0, the algorithm described in the proof of Lemma 4.1

does in fact compute reachability information for all paths starting
in the root of T and all prefixes of P :

Corollary 4.2. Let T = (VT ,ET) be a DAG with a root r and
|ET | =mT , and let ε > 0. In O(mTN) time, one can compute for all
points д ∈ T and p ∈ P whether there exists a path Qr,д in G from r
to д such that δF (Qr,д , P[p0,p]) ≤ ε .

And in fact, reachability can be computed efficiently if either the
start point of the path P or the start point of a corresponding path

in T is allowed to vary along an edge:

Corollary 4.3. Let T = (VT ,ET) be a DAG with root r , and let
|ET | =mT and ε > 0. The following can be computed inO(mTN) time:

(i) The existence of a path Qr,д in the graph G from r to д such
that δF (Qr,д , P[x ,p]) ≤ ε , for each triple д ∈ T , p ∈ P , and
x ∈ (p0,p1).

(ii) The existence of a path Qx,д in G from x to д such that
δF (Qx,д , P[p0,p]) ≤ ε , for each triple д ∈ T , p ∈ P , and
x ∈ (r ,v), where (r ,v) is the only edge incident on the root.

Proof. For (i), a simplemodification of the reachability initializa-

tion step in the proof of Lemma 4.1 results in computing reachability

IWISC 2018, April 12–13, 2018, Richardson, TX, USA E. Chambers et al.

from (r ,x) for any x ∈ (p0,p1). For (ii), if д < (r ,v), then a simple

modification of the reachability initialization step in the proof of

Lemma 4.1 results in computing reachability from any x ∈ (r ,v).
If both x and д are on the same edge (r ,v), then we compute the

reachability in (r ,v) × P directly. �

We apply Lemma 4.1 to the shortest path DAG Ts for each start

vertex s ∈ V . We compute a shortest path inTs that has the smallest

Fréchet distance to P inO(mN log(m +N)) time. Repeating this for

each source vertex, and accounting for running Dijkstra’s algorithm

in the beginning, results in a total runtime of O(nmN log(m + N))

and O(n(n + N)) space. We summarize our result:

Theorem 4.4 (Matching to Shortest Path). A path Q that
minimizes the Fréchet distance to P , among all shortest paths inG that
start and end at vertices inV , can be computed inO(nmN log(m+N))

and O(n(n + N)) space.

4.2 The Min-k Problem
In this section, we solve the min-k problem: For fixed ε ≥ 0, we

wish to find a pathQ that is a concatenation of the smallest number

of shortest paths in G such that δF (P ,Q) ≤ ε . We require that all

shortest paths start and end at vertices in V .

Auxiliary Graph. We build an auxiliary graph G ′ = (V ′,E ′) as
follows. The set of vertices are ordered pairs of a vertex in V and a

vertex in P , formally V ′ = {⟨v,pi ⟩ | v ∈ V , i ∈ {0, . . . ,N }}. There

is an edge between ⟨u,pi ⟩ and ⟨v,pj ⟩, if there is a shortest pathQ in

G from u to v such that the Fréchet distance between P[i, j] and Q
is at most ε . Formally, E ′ = {(⟨u,pi ⟩, ⟨v,pj ⟩) | 0 ≤ i ≤ j ≤ N , and

there is a shortest pathQ from u tov inG such that δF (Q, P[i, j]) ≤
ε}. We have |V ′ | = nN and |E ′ | ∈ O(n2N 2).

This auxiliary graph can be constructed as follows: We compute

all shortest path DAGs Tu by running Dijkstra’s shortest path al-

gorithm for every u ∈ V . For fixed u ∈ V and i ∈ {0 ≤ i ≤ N }, we

use Corollary 4.2 to compute the reachability information. For each

v ∈ V and i ≤ j ≤ N , we can then read off whether there exists

a shortest path in G from u to v such that δF (Qu,v , P[i, j]) ≤ ε .
This determines whether (⟨u,pi ⟩, ⟨v,pj ⟩) ∈ E ′. The runtime is

O(n(m + n logn)) to compute all shortest path DAGs, O(mN) to

compute the edges for fixed u and i , and henceO(n(mN 2 +n logn))
time total to compute E ′.

Algorithm. We can now solve our problem by finding a shortest

path inG ′
, starting at any vertex ⟨u,p0⟩ for anyu ∈ V and ending at

any vertex ⟨v,pN ⟩. We connect a super-source ŝ to all ⟨u,p0⟩ for any
u ∈ V . Since the length of the path is determined by the number of

edges, we can compute such shortest paths by running breadth-first

search from ŝ in timeO(|V ′ |+ |E ′ |) = O(n2N 2). The total runtime is

dominated by the timeO(n(mN 2+n logn)) to compute the auxiliary

graph. We summarize our result in the following theorem:

Theorem 4.5 (Min-k). For fixed ε ≥ 0, a path Q that is a con-
catenation of the smallest number of shortest paths in G such that
δF (P ,Q) ≤ ε can be computed in O(n(mN 2 + n logn)) time and
O(n2N 2) space.

4.3 Min-ε
Next, we show how we can use our solution for the min-k problem

described in Section 4.2, in order to develop a solution for the min-

ε problem. For fixed k ≥ 2, we wish to find a path Q that is a

concatenation of at most k shortest paths inG such that δF (P ,Q) is
minimized. Again, we require that all shortest paths start and end

at vertices in V .

Let k ≥ 2 be fixed. We modify the algorithm described in Sec-

tion 4.2 to serve as a decision procedure for a given ε ≥ 0: Return

true if a shortest path exists of length ≤ k , and false otherwise. We

optimize ε by performing a binary search on a superset of the criti-
cal values for ε , which are values for which solutions to the decision

procedure changes combinatorially. These combinatorial changes

are caused by combinatorial changes in the free space diagram for

a shortest path Q and P ; see Alt and Godau [3]. We consider all

possible critical values within each free space cell and across pairs

of free space cells. Possible critical values are those ε for which

aiu = b
j
v or cie = d

j
e for u,v ∈ V , e ∈ E, and j = i or j = i + 1. There

are O(n2N + N 2n) such values that constitute a superset of the

combinatorial changes that affect our decision procedure. We sort

these critical values inO((n2N +N 2n) log(n+N)) time and perform

a binary search using the decision procedure, which results in a

total runtime ofO(n(mN 2 +n logn) log(n+N)). We summarize our

result as follows.

Theorem 4.6 (Min-ε). For fixed k ≥ 0, a path Q that is a con-
catenation of at most k shortest paths in G such that δF (P ,Q) is
minimized, can be computed inO(n(mN 2 +n logn) log(n +N)) time
and O(n2N 2) space.

5 APPROXIMATION ALGORITHM FOR k-SP
WITHOUT VERTEX-CONSTRAINT

In this section, we consider the more general version of the k-
shortest path problem where there is no vertex-constraint. Let |G |

denote the underlying space ofG , consisting of all points, including
those in the interior of edges, in G. We say that a path Q ⊂ |G |

in G is a k-SP if it can be partitioned into k consecutive pieces

Q = Q1 ◦Q2 · · · ◦Qk such that each Qi is a shortest path between

its two endpoints in |G |. Let P = {P1, . . . , Pk } be a k-partitioning
of the underlying space |P | of the polygonal curve P ; that is, |P | =
P1 ◦ P2 · · · ◦ Pk with Pi and Pj disjoint in their interior for all i , j .
We say that the graph G has a (k, ε)-matching for P if there exists a

k-SP Q = Q1 ◦Q2 · · · ◦Qk and a k-partitioning P = {P1, P2, . . . Pk }
of P such that for any i ∈ [1,k], the Fréchet distance is bounded:
δF (Qi , Pi) ≤ ε . (Note that this also implies that δF (Q, P) ≤ ε .) We

refer to endpoints of each path in Q and in P as break-points. Note
that the break-points could lie in the interior of edges in G or in P .

Problem 4. Given k and ε > 0, the goal is to decide whether
there exists a k-SP Q = Q1 ◦Q2 · · · ◦Qk and a k-partitioning P =
{P1, P2, . . . Pk } of P such that for any i ∈ [1,k], the Fréchet distance
is bounded: δF (Qi , Pi) ≤ ε .

This general version of the problem seems to be much more

challenging. For example, consider Figure 3. Suppose we already

know that point p0 should be matched to some point on edge e1 =
(u1,u2), and the last point pN should be matched to some point

on edge e2 = (w1,w2). Let π1 be a shortest path from u1 to w1,

Map-Matching Using Shortest Paths IWISC 2018, April 12–13, 2018, Richardson, TX, USA

and π2 be a shortest path from u2 to w2. We need to compute a

shortest path starting in some u ∈ e1 and ending in some w ∈ e2
whose Fréchet distance to P is at most ε . However, whether the path
u { π1 { w or the path u { π2 { w is shortest depends on the

positions of both u andw . Hence, the end pointw depends on the

starting point u, which makes developing a dynamic programming

strategy challenging.

In this section, we focus on approximation algorithms. We say

that an algorithm is an (α , β)-approximation for the (k, ε)-matching

problem, if it computes an (αk, βε)-matching for the path P when-

ever there exists a (k, ε)-matching for P in G. In what follows, we

describe such an approximation algorithm, where the input satisfies

the following mild assumption:

Assumption-R: For the optimal k-SP Q , there is no U-turn

in the interior of an edge. Equivalently, for a break-point si
connecting shortest path pieces Qi and Qi+1, if si is in the

interior of edge e = (u,v), then Qi ∩Qi+1 ∩ e = {si }.

Theorem 5.1 (Approximation Theorem). Let P be a polygonal
path and G = (V ,E) be a graph satisfying Assumption-R, there is a
(2, 2)-approximation algorithm for the (k, ε)-matching problem with
running time O(nmN 2), where n = |V |,m = |E |, and N = |P |.

To prove Theorem 5.1, we solve a version of the k-matching

problem for which we require that all break-points in the k-SP Q ,
other than the start point and endpoint, have to be vertices from the

graphG. We call this theG-restricted (k, ε)-matching problem for P .
Theorem 5.1 follows immediately from the two propositions below.

The proofs of these propositions are in the full version of this paper.

Proposition 5.2. If there is a (k, ε)-matching between P and G,
where the input satisfies Assumption-R, then there is aG-restricted
(2k, ε)-matching between P and G.

Proposition 5.3. Given a polygonal path P and a graph G =
(V ,E), there is a (1, 2)-approximation algorithm for the G-restricted
(k, ε)-matching problem whose running time is O(nmN 2), where n =
|V |,m = |E |, and N = |P |.

6 DISCUSSION AND FUTUREWORK
In this paper, we present the first algorithms for map matching

wherewe restrict possiblematching candidates to consist of shortest

paths in the graph. This variant arises naturally given the nature of

GPS data, as many routing algorithms prefer certain types of paths;

Figure 3: The pathu { π1 { w or the pathu { π2 { w may
be shortest, depending on the positions of u andw , wherew
depends on u.

shortest paths are natural in this setting, but similar algorithms

could be investigated in more complex settings, such as least costs

roads or shortest travel time paths.

We are able to give exact algorithms for the case where shortest

paths go between vertices in the graph; however, these techniques

will not generalize to give exact algorithms when the shortest paths

begin or end in the middle of an edge. Even our approximation for

this setting does not allow the two consecutive shortest paths to

reverse in the middle of an edge. Further investigation and exten-

sions of these algorithms, as well as improved running time, are

perhaps the next natural area of investigation in this work.

Acknowledgements
The authors would like to acknowledge the generous support of

the National Science Foundation under grants IIS-1319944, CCF-

1054779, CCF-1614562, CCF-1618605, CCF-1618247, andCCF-1618469.

REFERENCES
[1] Mahmuda Ahmed and Carola Wenk. 2012. Constructing Street Networks from

GPS Trajectories. In Algorithms–ESA 2012. Springer, 60–71.
[2] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. 2003. Matching Planar

Maps. Journal of Algorithms 49 (2003), 262–283.
[3] Helmut Alt and Michael Godau. 1995. Computing the Fréchet Distance between

Two Polygonal Curves. Int. J. Comput. Geometry Appl. 5 (1995), 75–91.
[4] Theo A Arentze and Harry J.P Timmermans. 2004. A learning-based transporta-

tion oriented simulation system. Transportation Research Part B: Methodological
38, 7 (2004), 613 – 633. https://doi.org/10.1016/j.trb.2002.10.001

[5] Michael Balmer, Kay Axhausen, and Kai Nagel. 2006. Agent-Based Demand-

Modeling Framework for Large-Scale Microsimulations. Transportation Research
Record: Journal of the Transportation Research Board 1985 (2006), 125–134. https:

//doi.org/10.3141/1985-14

[6] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. 2005. On

Map-matching Vehicle Tracking Data. In Proc. 31st VLDB Conf. 853–864.
[7] Wilner Ciscal-Terry, Mauro Dell’Amico, Natalia Selini Hadjidimitriou, and

Manuel Iori. 2016. An analysis of drivers route choice behaviour using GPS

data and optimal alternatives. Journal of Transport Geography 51 (2016), 119–

129.

[8] Maurice Fréchet. 1906. Sur quelques Points du Calcul Fonctionnel. Rendiconti del
Circolo Matematico di Palermo 22, 1 (1906), 1–74.

[9] Amin Gheibi, Anil Maheshwari, and Jörg-Rüdiger Sack. 2016. Minimizing Walk-

ing Length in Map Matching. In Topics in Theoretical Computer Science: The First
IFIP WG 1.8 International Conference, M. T. Hajiaghayi and M. R. Mousavi (Eds.).

105–120.

[10] Sariel Har-Peled and Benjamin Raichel. 2014. The Fréchet Distance Revisited

and Extended. ACM Trans. Algorithms 10, 1 (Jan. 2014), 3:1–3:22.
[11] Mithilesh Jha, Samer Madanat, and Srinivas Peeta. 1998. Perception updating

and day-to-day travel choice dynamics in traffic networks with information

provision. Transportation Research Part C: Emerging Technologies 6, 3 (1998), 189
– 212. https://doi.org/10.1016/S0968-090X(98)00015-1

[12] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang.

2009. Map-Matching for Low-Sampling-Rate GPS Trajectories. In Proc. 17th ACM
SIGSPATIAL Int. Conf. Advances in Geographic Information Systems. 352–361.

[13] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through

Noise and Sparseness. In Proc. 17th ACM SIGSPATIAL Int. Conf. Advances in
Geographic Information Systems. 336–343.

[14] Carlo Prato and Shlomo Bekhor. 2006. Applying Branch-and-Bound Technique

to Route Choice Set Generation. Transportation Research Record: Journal of the
Transportation Research Board 1985 (2006), 19–28. https://doi.org/10.3141/1985-03

[15] Mohammed Quddus and Simon Washington. 2015. Shortest path and vehicle

trajectory aided map-matching for low frequency GPS data. Transportation
Research Part C: Emerging Technologies 55 (2015), 328–339.

[16] Piotr Szwed and Kamil Pekala. 2014. An Incremental Map-Matching Algorithm

Based on Hidden Markov Model. In Artificial Intelligence and Soft Computing.
579–590.

[17] Muhammad Reaz Uddin, Chinya Ravishankar, and Vassilis J. Tsotras. 2011. A

System for Discovering Regions of Interest from Trajectory Data. In Advances in
Spatial and Temporal Databases. Springer, 481–485.

[18] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, and Yan Huang.

2010. T-Drive: Driving Directions Based on Taxi Trajectories. In Proc. 18th ACM
SIGSPATIAL Int. Conf. Advances in Geographic Information Systems. 99–108.

https://doi.org/10.1016/j.trb.2002.10.001
https://doi.org/10.3141/1985-14
https://doi.org/10.3141/1985-14
https://doi.org/10.1016/S0968-090X(98)00015-1
https://doi.org/10.3141/1985-03

IWISC 2018, April 12–13, 2018, Richardson, TX, USA E. Chambers et al.

[19] Lei Zhang, David M. Levinson, and Shanjiang Zhu. 2008. Agent-Based Model of

Price Competition, Capacity Choice, and Product Differentiation on Congested

Networks. Journal of Transport Economics and Policy 42, 3 (2008), 435–461.

[20] L. Zhu, J.R. Holden, and J.D Gonder. 2017. Trajectory Segmentation Map-

Matching Approach for Large-Scale, High-Resolution GPS Data. Transportation
Research Record: Journal of the Transportation Research Board 2645, 67-75 (2017).

[21] Shanjiang Zhu and David Levinson. 2015. Do People Use the Shortest Path?

An Empirical Test of Wardrop’s First Principle. PLOS ONE 10 (08 2015), 1–18.

https://doi.org/10.1371/journal.pone.0134322

https://doi.org/10.1371/journal.pone.0134322

	Abstract
	1 Introduction
	2 Preliminaries
	3 Shortest Among Matching Paths
	3.1 Algorithm
	3.2 Properties

	4 Match to Concatenation of Shortest Paths
	4.1 Matching to Shortest Paths
	4.2 The Min-k Problem
	4.3 Min-

	5 Approximation Algorithm for k-SP Without Vertex-Constraint
	6 Discussion and Future Work
	References

