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ABSTRACT. Fix a finite set of points in Euclidean n-space E
n, thought of

as a point-cloud sampling of a certain domain D ⊂ E
n. The Vietoris-

Rips complex is a combinatorial simplicial complex based on proximity
of neighbors that serves as an easily-computed but high-dimensional ap-
proximation to the homotopy type of D. There is a natural “shadow”
projection map from the Vietoris-Rips complex to E

n that has as its im-
age a more accurate n-dimensional approximation to the homotopy type
of D.

We demonstrate that this projection map is 1-connected for the planar
case n = 2. That is, for planar domains, the Vietoris-Rips complex accu-
rately captures connectivity and fundamental group data. This implies
that the fundamental group of a Vietoris-Rips complex for a planar point
set is a free group. We show that, in contrast, introducing even a small
amount of uncertainty in proximity detection leads to ‘quasi’-Vietoris-
Rips complexes with nearly arbitrary fundamental groups. This topo-
logical noise can be mitigated by examining a pair of quasi-Vietoris-Rips
complexes and using ideas from persistent topology. Finally, we show
that the projection map does not preserve higher-order topological data
for planar sets, nor does it preserve fundamental group data for point
sets in dimension larger than three.

1. INTRODUCTION

Given a set X of points in Euclidean space En, the Vietoris-Rips complex
Rε(X) is the abstract simplicial complex whose k-simplices are determined
by subsets of k + 1 points in X with diameter at most ε. For simplicity, we
set ε = 1 and write R := R1(X) for the remainder of the paper, with the
exception of §4. For brevity, we often refer to R as the Rips complex. The
Rips complex is an example of a flag completion — the maximal simplicial
complex with a given 1-skeleton.

The Vietoris-Rips complex was used by Vietoris [20] in the early days
of homology theory as a means of creating finite simplicial models of met-
ric spaces. Within the past two decades, Rips’ re-invention of the concept
has been utilized frequently in geometric group theory [14] as a means of
building simplicial models for group actions. Most recently, Vietoris-Rips
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complexes have been used heavily in computational topology, as a simpli-
cial model for point-cloud data [3, 4, 5, 8], and as simplicial completions of
communication links in sensor networks [9, 10, 18].

The utility of Rips complexes in computational topology is as an easily
computed and stored approximation to the topology of a cloud of points.
We make this notion more specific. To a collection of points, one can as-

sign a different simplicial model called the Čech complex that accurately
captures the homotopy type of the cover of these points by balls. Formally,

given a set X of points in some Euclidean space En, the Čech complex
Cε(X) is the abstract simplicial complex where a subset of k + 1 points in
X determines a k-simplex if and only if they lie in a ball of radius ε/2. The

Čech complex is equivalently the nerve of the set of closed balls of radius

ε/2 centered at points in X. The Čech theorem (or Nerve lemma, see, e.g.,
[2]) states that Cε(X) has the homotopy type of the union of these balls.

Thus, the Čech complex is an appropriate simplicial model for the topol-
ogy of the point cloud (where the parameter ε is a variable).

There is a price for the high topological fidelity of a Čech complex. Given

the point set, it is nontrivial to compute and store the simplices of the Čech
complex. The virtue of a Rips complex is that it is determined completely
by its 1-skeleton — the proximity graph of the points. (This is particularly
useful in the setting of ad hoc wireless networks, where the hardware es-
tablishes communication links based, ideally, on proximity of nodes.) The
penalty for this simplicity is that it is not immediately clear what is encoded

in the homotopy type of R. Like the Čech complex, it is not generally a

subcomplex of its host Euclidean space En, and, unlike the Čech complex
it need not behave like an n-dimensional space at all: R may have nontriv-
ial topological invariants (homotopy or homology groups) of dimension n

and above. Clearly, for ε too small or too large, the fidelity of both Čech
and Rips complexes fails. For a given ε and a sufficiently dense sampling

of points on a manifold, both the Čech and Rips complexes return topolog-
ically faithful simplicial approximations (see, e.g., [19, 16]).

The disadvantage of both Čech and Rips complexes are in their rigid
cut-offs as a function of distance between points. Arbitrarily small pertur-
bations in the locations of the points can have dramatic effects on the topol-
ogy of the associated simplicial complexes. Researchers in sensor networks
are acutely aware of this limitation, given the amount of uncertainty and
fluctuation in wireless networks. To account for this, several researchers
in sensor networks have used a notion of a distance-based communication
graph with a region of uncertain edges [1, 7, 17]. This motivates the follow-
ing construction.

Fix an open uncertainty interval (ε, ε′) which encodes connection errors
as a function of distance. For all nodes of distance ≤ ε, there is an edge,
and for all nodes of distance ≥ ε′, no edge exists. For nodes of distance
within (ε, ε′), a communication link may or may not exist. A quasi-Rips
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complex Q with uncertainty interval (ε, ε′) is the simplicial flag completion
of such a graph. We note that this does not model temporal uncertainty,
merely spatial.

A completely different model of simplicial complexes associated to a
point cloud comes from considering shadows. Any abstract simplicial com-

plex with vertices indexed by geometric points in En (e.g., a Rips, Čech, or
quasi-Rips complex) has a canonical shadow in En, which strikes a balance
between computability and topological faithfulness. For, say, a Rips com-
plex, the canonical projection p : R → En is the well-defined function that
maps each simplex in R affinely onto the convex hull of its vertices in En.
This projection map is continuous and piecewise-linear. The shadow S is
the image p(R) of this projection map.

FIGURE 1. A connectivity graph in the plane [left] deter-
mines a 5-dimensional (Vietoris-) Rips complex [center] and
its 2-dimensional projected shadow [right].

This paper studies the topological faithfulness of the projection map p
(see Figure 1). Specifically, we look at the connectivity of p. Recall that
a topological map f : X → Y is k-connected if the induced homomor-
phisms on homotopy groups πi(p) : πi(X) → πi(Y ) are isomorphisms for
all 0 ≤ i ≤ k: e.g., a 1-connected map preserves path-connectivity and
fundamental group data.

We can now list the principal results of the paper, ordered as they appear
in the following sections.

(1) For any set of points in E2, π1(p) : π1(R) → π1(S) is an isomor-
phism.

(2) The fundamental group of any planar Rips complex is free.
(3) Given any finitely presented group G, there exists a quasi-Rips com-

plex Q with arbitrarily small uncertainty interval such that π1(Q) is
a free extension of G.

(4) Given a pair of quasi-Rips complexes Qs ⊂ Qw with disjoint uncer-
tainty intervals, the rank of the homology map H1(Qs) → H1(Qw)
induced by inclusion is bounded by the number of holes in a shadow
of intermediate radius.
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(5) The projection map p on Rn is always k-connected for k = 0 or
n = 1. For all other cases except (k, n) = (1, 2) and, perhaps, (1, 3),
k-connectivity fails on Rn (see Figure 8).

Items (1) and (2) and (5) above are of most interest in the classification
of Vietoris-Rips complexes. Items (2), (3), and (4) were proved in response
to questions raised in sensor networks. Specifically, (2) answers the ques-
tion of how well a Rips complex approximates a coverage region for an ad
hoc wireless network of idealized sensors, and whether, e.g., H1 in inte-
ger coefficients will ever return torsional elements (which impacts which
coefficient groups can be safely used in computations!). Items (3) and (4)
were proved as, respectively, negative and positive answers to the ques-
tion of whether a quasi-Rips complex provides a useful approximation to
the topology of coverage for a sensor network with uncertainty in wireless
communications near the range limits.

2. PLANAR RIPS COMPLEXES AND THEIR SHADOWS

In this section, we restrict attention to the 2-dimensional case.

2.1. The shadow complex. The shadow S is a polyhedral subset of the
plane. By Carathéodory’s theorem [11], S is the projection of the 2-skeleton
of R. Since the vertices of R are distinct points in the plane, it follows that
distinct edges of R have distinct images under p, and these are nondegen-
erate. Informally we will identify vertices and edges of R with their images
under p. On the other hand, p may be degenerate on 2-simplices.

We can canonically decompose S into a 2-dimensional shadow complex
as follows:

• A shadow vertex is either a vertex of R or a point of transverse

intersection of two edges of R. We write S(0) for the set of shadow
vertices.

• A shadow edge is the closure of any component of p(R(1)) \ S(0).
Each shadow edge is a maximal line segment contained in a Rips

edge, with no shadow vertices in its interior. We write S(1) for the
union of all shadow vertices and shadow edges.

• Finally, a shadow face is the closure of any bounded component

of E2 \ S(1).

The fundamental group π1(S) may now be described in terms of com-
binatorial paths of shadow edges modulo homotopy across shadow faces,
whereas π1(R) may be described in terms of combinatorial paths of Rips
edges modulo homotopy across Rips faces. This description opens the door
to combinatorial methods in the proof that π1(p) is an isomorphism.

2.2. Technical Lemmas. Theorem 3.1 will follow from reduction to three
special cases. We prove these cases in this subsection. We use the following
notation. Simplices of a Rips complex will be specified by square braces,
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e.g., [ABC]. Images in the shadow complex will be denoted without adorn-
ment, e.g., ABC . The Euclidean length of an edge AB will be denoted |AB|.
Braces 〈·〉 will be used to denote the span in R: the smallest subcomplex
containing a given set of vertices, e.g., 〈ABCD〉.

The following propositions address the three special cases of Theorem 3.1
which are used to prove the theorem. Certain induced subcomplexes of R
are shown to be simply connected. In the first two cases, it is helpful to
establish the stronger conclusion that these subcomplexes are cones: all
maximal simplices share a common vertex, called the apex. The first of
these cases is trivial and well-known (viz., [9, 13]).

Proposition 2.1. Let R = 〈ABY Z〉 be a Rips complex containing simplices [AB]
and [Y Z] whose images in S intersect. Then R is a cone.

Proof. Let x be the common point of AB and Y Z . Each edge is split at x into
two pieces, at most one of which can have length more than one-half. The
triangle inequality implies that the shortest of these four half-edges must
have its endpoint within unit distance of both endpoints of the traversing
edge, thus yielding a 2-simplex in R. �

Proposition 2.2. Let R = 〈ABXY Z〉 be a Rips complex containing simplices
[AB] and [XY Z] whose images in S intersect. Then R is a cone.

Proof. The edge AB intersects the triangle XY Z . If AB intersects only one
edge of XY Z , then one vertex of AB (say, A) lies within XY Z and cones
off a 3-simplex [AXY Z] in R. Therefore, without a loss of generality we
may assume AB crosses ZY and ZX.

By Proposition 2.1, the subcomplexes 〈ABXZ〉 and 〈ABY Z〉 are cones.
If these two cones have the same apex, then the entire Rips complex R is a
cone with that apex. Similarly, if either apex lies inside the image triangle
XY Z , then R is a cone with that apex. The only remaining possibility is
that A is the apex of one subcomplex and B is the apex of the other; in this
case, R is a cone over Z , since both A and B are connected to Z . �

Y

B

Z

A

X

FIGURE 2. The last case of Proposition 2.2.
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Proposition 2.3. Let R = 〈ABCDXY Z〉 be a Rips complex containing sim-
plices [AB], [CD] and [XY Z] whose images in S meet in a common point. More-
over, assume that none of A,B,C,D lies in the interior of XY Z . Then π1(R) is
trivial.

D

Y

B Z

C

A

X

FIGURE 3. The setup for Proposition 2.3.

To prove Proposition 2.3, we use two further geometric lemmas.

Lemma 2.4. Let R = 〈BXY Z〉 be a Rips complex containing simplex [XY Z].
If M is a point in XY Z such that |BM | ≤ 1

2 , then R contains at least one of the
edges [BX], [BY ], [BZ].

Proof. If B lies in XY Z then all three edges belong to R. Otherwise, BM
meets the boundary of XY Z at a point M ′. We may assume that M ′ lies on
XY , with |M ′X| ≤ |M ′Y |. Then |BX| ≤ |BM ′| + |M ′X| ≤ 1

2 + 1
2 = 1. �

Lemma 2.5. Let R = 〈ABCXY Z〉 be a Rips complex containing simplices
[ABC] and [XY Z]. Suppose that AB intersects XY Z but BC and AC do not.
Then R is a cone.

Proof. The hypotheses of the lemma imply that at least one of the points X,
Y , or Z lies in the interior of ABC . R is a cone on this point. �

Proof of Proposition 2.3. We argue by exhaustive case analysis that R con-
tains no minimal non-contractible cycle.

Suppose γ is a minimal non-contractible cycle in R. Because R is a flag
completion, γ must consist of at least four Rips edges. Our previous Propo-
sitions imply that this cycle intersects each simplex [AB], [CD], and [XY Z]
at least once. By minimality, γ contains at most one edge of [XY Z]. Thus,
we may assume without loss of generality (by relabeling if necessary) that
γ is of the form A(B)C(D)X(Y ) where (·) denotes an optional letter.

Claim 1: In a minimal cycle, the subwords ABCD, CDXY , XY AB are im-
possible. Proposition 2.1 (in the first case) and Proposition 2.2 (in the last
two cases) imply that the subpaths corresponding to these subwords are
homotopic (relative to endpoints) within a cone subcomplex to a path with
at most two edges, contradicting the minimality of γ.
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Claim 1 implies that that there is at most (i.e. exactly) one optional let-
ter. This leaves three possible minimal non-contractible cycles: ACXY ,
ABCX, and ACDX. The last two cases differ only by relabeling, so it suf-
fices to consider only ACXY and ABCX.

Claim 2: ACXY is impossible. Suppose ACXY is a cycle in R. If AC meets
XY Z then Proposition 2.2 implies that 〈ACXY Z〉 is a cone, so ACXY is
contractible. Thus, we can assume that AC does not meet XY Z .

By Proposition 2.1, either [BC] or [AD] is a Rips edge. Without loss of
generality, assume [BC] is a Rips edge; then [ABC] is a Rips triangle. If
BC does not meet XY Z , then Lemma 2.5 implies that 〈ABCXY Z〉 is a
cone, and hence that ACXY is contractible. Thus we can assume that BC
intersects XY Z .

Proposition 2.2 now implies that both 〈ABXY Z〉 and 〈BCXY Z〉 are
cones. If any of the segments [BX], [BY ], [BZ] is a Rips edge, then the
cycle ACXY is homotopic to the sum of two cycles, contained respectively
in the cones 〈ABXY Z〉 and 〈BCXY Z〉, and hence is contractible. See Fig-
ure 4(a).

C
A

B

XYZ

C
A

B

XYZ

FIGURE 4. ACXY (left), or ABCX (right), splits into two
cycles in the presence of [BX], [BY ], or [BZ].

We can therefore assume that none of the segments [BX], [BY ], [BZ] is
a Rips edge. In this case, the apex of 〈ABXY Z〉 must be A. In particu-
lar, the diagonal [AX] of the cycle ACXY belongs to R, and so ACXY is
contractible. This completes the proof of Claim 2.

Claim 3: ABCX is impossible. Suppose ABCX is a cycle in R. If either
[AC] or [BX] is a Rips edge, then ABCX is trivially contractible. More-
over, if either [BY ] or [BZ] is a Rips edge, then the cycle ABCX reduces
to the sum of two cycles, as in Figure 4(b). The left cycle is contractible by
Proposition 2.2, and the right cycle is contractible by Claim 2 (suitably rela-
beled), so ABCX is contractible in that case too. We can therefore assume
that none of the segments [AC], [BX], [BY ], or [BZ] is a Rips edge.

Now let M be a common point of intersection of AB, CD, and XY Z .
Lemma 2.4 implies that |BM | > 1

2 , and so |AM | = |AB| − |BM | ≤ 1
2 . Since

|AC| > 1, we have |CM | = |AC| − |AM | > 1
2 , and so |DM | = |CD| −
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|CM | ≤ 1
2 . These inequalities imply that |AD| ≤ |AM |+ |DM | ≤ 1, so [AD]

is a Rips edge.
It follows that R contains the cycle ADCX. This cycle is homotopic to

ABCX, since 〈ABCD〉 is a cone by Proposition 2.1. Lemma 2.4 implies that
at least one of the segments [DX], [DY ], [DZ] must be a Rips edge. Arguing
as before, with D in place of B, we conclude that ADCX, and thus ABCX,
is contractible. This completes the proof of Claim 3. �

2.3. Lifting Paths via Chaining. For any path α in R(1), the projection p(α)

is a path in S(1), but not every shadow path is the projection of a Rips path.
Every oriented shadow edge in S is covered by one or more oriented edges

in R. Thus to every path in S(1) can be associated a sequence of oriented
edges in R. These edges do not necessarily form a path, but projections of
consecutive Rips edges necessarily intersect at a shadow vertex.

Definition 2.6. Let [AB] and [CD] be oriented Rips edges induced by consecutive
edges in some shadow path. A chaining sequence is a path from A to D in the
subcomplex 〈ABCD〉 which begins with the edge AB and ends with the edge CD.

If we concatenate chaining sequences of shadow edges in S by identify-
ing the Rips edges in the beginning and end of adjacent lifting sequences,
we obtain a lift of the shadow path to R. For any shadow path α in S ,
we let α̂ denote a lift of α to the Rips complex by means of chaining se-
quences. Note that the lift of a shadow path is not a true lift with respect to
the projection map p — the endpoints, for example, may differ.

Lemma 2.7. For any path α in S(1), any two lifts of α to R with the same end-
points are homotopic in R rel endpoints.

Proof. Let σ and τ be consecutive shadow edges in α, and let [AB] and
[CD] be Rips edges such that σ ⊆ AB and τ ⊆ CD. Proposition 2.1 implies
that all chaining sequences from A to D are homotopic rel endpoints in
〈ABCD〉, and thus in R. If every shadow edge in α lifts to a unique Rips
edge, the proof is complete.

On the other hand, suppose τ ⊆ CD ∩ C ′D′ for some Rips edge [C ′D′]
that overlaps [CD]. Proposition 2.1 implies that both [CC ′] and [DD′] are
Rips edges. Moreover, since AB intersects CD ∩ C ′D′, any chaining se-
quence from A to D is homotopic rel endpoints in R to any chaining se-
quence from A to D′ followed by [D′D]. Thus, concatenation of chaining
sequences is not dependent on uniqueness of edge lifts. �

We next show that the projection of a lift of any two consecutive shadow
edges is homotopic to the original edges.

Lemma 2.8. For any two adjacent shadow edges wx and xy, where AB and CD
are Rips edges with wx ⊆ AB and xy ⊆ CD, p(ŵx · xy) is homotopic rel end-
points to the path ABxCD in S .
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A

B

D

y

x

w

FIGURE 5. The setting for Lemma 2.8

Proof. Consider the possible chaining sequences from A to D for wx · xy.
Either BC or AD must exist in R by Proposition 2.1.

Suppose BC exists. By Lemma 2.7, the chaining sequence is the Rips
path ABCD (up to homotopy rel endpoints). Either the triangle [ABC] or
the triangle [BCD] exists in R by Proposition 2.1, so the triangle BCx is in
shadow. This gives that ABCD ' AxD ' ABxCD in S .

If BC is not a Rips edge, then AD must be a Rips edges. By Lemma 2.7,
the chaining sequence is the Rips path ABADCD (up to homotopy rel end-
points). Either the triangle [ACD] or the triangle [ABD] exists in R by
Proposition 2.1. Therefore, ADx lies in the shadow, so we get ABADCD '
ABxCD in S . �

Lemma 2.9. For any lift α̂ of any shadow path α with endpoints in p(R(0)), we
have p(α̂) ' α rel endpoints.

Proof. For each pair of edges consecutive shadow edges wx and xy in α,
where wx ⊆ AB, xy ⊆ CD, and AB and CD are Rips edges, Lemma 2.8
says that the projection of their lifting sequence deforms back to ABxCD.
Every adjacent pair of chaining sequences can still be identified along com-
mon edges, since each ends with the first edge in the next one along α.
The projection is homotopic rel endpoints to the original path α except for
spikes of the form xB and xC at each shadow junction, which can be de-
formation retracted, giving p(α̂) ' α. �

3. 1-CONNECTIVITY ON R2

The following is the main theorem of this paper.

Theorem 3.1. For any set of points in E2, π1(p) : π1(R) → π1(S) is an isomor-
phism.

Proof. Assume that all π1 computations are performed with a basepoint in

p(R(0)), to remove ambiguity of endpoints in lifts of shadow paths to R.
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Surjectivity of p on π1 follows from Lemma 2.9 and the fact that any loop in
S is homotopic to a loop of shadow edges thanks to the cell structure of S .

To prove injectivity, note that any contractible cycle in S is expressible
as a concatenation of boundary loops of shadow faces (conjugated to the
basepoint). Thanks to Lemma 2.9, injectivity of π1(p) will follow by show-
ing that the boundary of any shadow face lifts to a contractible loop in R.
Consider therefore a shadow face Ψ contained in the projection of a Rips
2-simplex [XY Z], and choose [XY Z] to be minimal in the partial order of
such 2-simplices generated by inclusion on the projections.

Write ∂Ψ as α1 · α2 · · ·αn, where the αi are the shadow edges, and let
[AiBi] be a sequence of directed Rips edges with αi ⊆ [AiBi]. Neither the
Ai nor the Bi project to the interior of XY Z (see Figure 6); if any Rips vertex
W did so, the edges [XW ], [Y W ] and [ZW ] would exist in R. As Ψ cannot
be split by the image of any of these three edges, it must be contained in the
projected image of a Rips 2-simplex, say [XY W ], whose image lies within
that of [XY Z], contradicting the minimality assumption on [XY Z]. The
hypotheses of Proposition 2.3 thus apply to [XY Z] and the consecutive
edges [AiBi], [Ai+1Bi+1], and each complex 〈AiBiAi+1Bi+1XY Z〉 is simply
connected.

Y

Z

X

Ψ

A1

B1

B2

B3

B4

B5

A2

A3

A4

A5

FIGURE 6. The boundary of a shadow face Ψ within XY Z is
determined by Rips edges [AiBi] whose projected endpoints
lie outside XY Z .

Fix the vertex X as a basepoint and fix a sequence of edge paths βi in
〈AiBiXY Z〉 from X to Ai. Such paths exist and are unique up to homotopy

since (by Proposition 2.2) 〈AiBiXY Z〉 is a cone. We decompose ∂̂Ψ into
loops γ1 · · · γn, where γi is the loop with basepoint X given by

γi = βi · ̂(αi · αi+1) · [Bi+1Ai+1] · β−1
i+1

where all indices are computed modulo n. By Proposition 2.3, each of these

loops γi is contractible; hence, so is Ψ̂. �
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Corollary 3.2. The fundamental group of a Rips complex of a planar point set is
free.

4. QUASI RIPS COMPLEXES AND SHADOWS

We observe that Theorem 3.1 fails for quasi-Rips complexes, even for
those with arbitrarily small uncertainty intervals. The failure of Proposi-
tion 2.1 in the quasi-Rips case makes it a simple exercise for the reader to
generate examples of a quasi-Rips complexes which are simply-connected
but whose shadows are not. Worse failure than this is possible.

Theorem 4.1. Given any uncertainty interval (ε, ε′) and any finitely presented
group G, there exists a quasi-Rips complex Q with π1(Q) ∼= G ∗ F , where F is a
free group.

Proof. It is well-known that any finitely presented group G can be real-
ized as the fundamental group of a 2-dimensional cell complex whose 0-
skeleton is a single point; whose 1-skeleton is a wedge (or “bouquet”) of
loops corresponding to the generators; and whose 2-cells are glued along
the 1-skeleton corresponding to relations. Such a complex can be triangu-
lated, and, after a barycentric subdivision, can be assumed to be 3-colored:
that is, the vertex is labeled by the set {0, 1, 2}, and there are no edges be-
tween vertices of the same color. Call this vertex 3-colored 2-d simplicial
complex K.

We perform a ‘blowup’ of the complex K to a 3-d simplicial complex K̃
as follows (see Figure 7 for an example). Recall, the geometric realization
of K can be expressed as the disjoint union of closed i-simplices (i = 0, 1, 2)
with all faces attached via simplicial gluing maps (the ∆-complex [15]). To

form K̃, take the disjoint union of closed i-simplices of K and instead of
simplicial gluing maps, use the join to connect all faces. The 3-coloring of

the vertex set of K is inherited by that of K̃.

Claim: The flag completion FK̃ of K̃ is homotopic to K.

There is a natural collapsing map c : K̃ → K which collapses the joins to
simplicial identification maps. The inverse image of any point p in an open
2-simplex of K is the same point in the corresponding open 2-simplex of

K̃. The inverse image of any point p in an open 1-simplex of K is homeo-
morphic to the wegde product of closed 2-simplices, one for each point in
the link of p in K. The inverse image of a 0-simplex p ∈ K consists of the 1-

skeleton of the link of p in K. If we complete K̃ to the flag completion FK̃,
then c−1(p) is homeomorphic to the star of v in K. Thus, after extending

the map c to the flag completion of K̃, all fibers of c are contractible, and

the flag completion of K̃ is thus homotopic to K.

We now embed FK̃ in a quasi-Rips complex Q. Define the vertices of Q
in R2 as follows. Fix an equilateral triangle of side length (ε + ε′)/2 in R2.

Embed the vertices of K̃ arbitrarily in sufficiently small open balls (of radii
no larger than (ε′ − ε)/4) centered at the vertices of this triangle, respecting
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FIGURE 7. A 3-colored simplicial complex K and its

blowup K̃, whose flag completion is homotopy equivalent

to K. Opposite edges of K (and thus K̃) can be identified to
yield a torus, projective plane, or Klein bottle.

the 3-coloring. For this vertex set in R2, we define Q by placing an edge

between vertices according to the edges of K̃, using the fact that any two
vertices not of the same color are separated by a distance within the un-
certainty interval. Of course, we must also add edges between like-colored
vertices, forming three (large) complete connected subgraphs, since these
lie within the small balls. The quasi-Rips complex Q is the flag completion

of this graph, which contains an embedded copy of FK̃.
We determine π1(Q) in two steps. First, consider the addition of monochro-

matic edges for which the resulting flag completion has new 2-simplices
which are not monochromatic.

Claim: The addition of such edges leaved π1 of the flag completion unchanged.
Any added monochromatic edge e which creates a non-monochromatic 2-
simplex σ must have c(e) a 0-simplex of K and c(σ) a 1-simplex of K, giving
rise (upon taking a flag completion) to a new 3-simplex attached along a
contractible subcomplex of its face. The addition of all such edges leaves
π1 of the resulting flag completion unchanged, since all the added edges
are pairwise disjoint and lead to the pairwise disjoint 3-simplices in the
flag completion, and since each attaching map glues along a contractible
set.

It remains to attach all edges which lead to monochromatic simplices in
the flag completion.
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Claim: π1(Q) is a free extension of π1(FK̃). Work one color at a time. The
addition of the monochromatic simplices used to form Q from the resulting
complex of the previous claim leads to a potentially very high-dimensional
complex; nevertheless, this step is homotopic to adding an abstract colored
vertex and “coning off” the flag subcomplex defined by that color. Since the
flag subcomplex defined by a given color is a disjoint union of contractible
sets (roughly speaking, filled-in “blowups” of vertices of K), the resulting
space is homotopic to taking a wedge with (potentially many) circles and
thus yields a free extension of the fundamental group of the flag completion

FK̃. This ends the claim and the proof, since π1(FK̃) ∼= π1(K) ∼= G. �

We note that the construction above may be modified so that the lower-
bound Rips complex Rε is connected. If necessary, the complex can be so
constructed that the inclusion map Rε ↪→ Rε′ induces an isomorphism on
π1 (which factors through π1(Q)).

Theorem 4.1 would appear to be a cause for despair, especially for appli-
cations to sensor networks, in which the rigid unit-disc graph assumption
is unrealistic. There are several works in the theoretical sensor networks
literature [1, 7, 17] that use a quasi-unit disc graph assumption. From the
point of view of representing the topology of the network, this would ap-
pear to be suboptimal.

However, Theorem 3.1 is not without utility, even when only quasi-Rips
complexes are available. We proceed using the principle of topological
persistence: examining the topology of a map between spaces as opposed
to a space alone. Specific to this case, given an inclusion ι : A ↪→ X
of A ⊂ X, one writes H∗(A → X) as the image of the induced map
H∗(ι) : H∗(A) → H∗(X). We consider a sensor network whose commu-
nications processing can distinguish between very close nodes (via a strong
signal) as opposed to moderately close nodes (via a weak signal), cf. [10].
Assuming some uncertainty in the communication ranges, one has a pair
of quasi-Rips complexes Q ⊂ Q′. Although the fundamental groups (and,
via abelianization, H1) of these quasi-Rips complexes can be uncorrelated
with the topology of their shadows, their persistent homology can be used
to infer genuine holes in coverage, as follows:

Proposition 4.2. Let Qs ⊂ Qw denote two quasi-Rips complexes with disjoint
uncertainty intervals (εs, ε

′

s) and (εw, ε′w). Then, in homology with field coeffi-
cients, the rank of the map H1(Qs) → H1(Qw) is bounded above and below:

rank
(
H1(Sεs

→ Sε′

w

)
)
≤ rank (H1(Qs → Qw)) ≤ dim (H1(Sη))

for any ε′s ≤ η ≤ εw.

Roughly speaking, this result says that a pair of quasi-Rips complexes,
graded according to sufficiently distinct strong and weak signal links, suf-
fices to induce information about related shadow complexes.
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Proof. The inclusions Rεs
⊆ Qs ⊆ Rη ⊆ Qw ⊆ Rε′

w

induce a sequence of
maps

H1(Sεs
) → H1(Qs) → H1(Sη) → H1(Qw) → H1(Sε′

w

)

where we have substituted H1(S) = H1(R) using Theorem 3.1 and the fact
that H1 is the abelianization of π1. The rank estimates now follow from
linear algebra. �

Knowing two ‘noisy’ quasi-Rips complexes and the inclusion relating
them yields true information about the (otherwise unobservable) shadow.

5. k-CONNECTIVITY IN Rn

Theorem 3.1 points to the broader question of whether higher-order topo-
logical data are preserved by the shadow projection map. Recall that a
topological space is k-connected if the homotopy groups πi vanish for all
0 ≤ i ≤ k. A map between topological spaces is k-connected if the induced
homomorphisms on πi are isomorphisms for all 0 ≤ i ≤ k.

We summarize the results of this section in Figure 8.

2 3 4 5 61

1

2

3

4

k

n
0

?

FIGURE 8. For which (n, k) is the Rips projection map in En

k-connected? The only unresolved case is (3, 2).

Throughout this paper, we have ignored basepoint considerations in the
description and computation of π1. The following proposition excuses our
laziness.

Proposition 5.1. For any set of points in En, the map p : R → S is 0-connected.

Proof. Certainly π0(p) is surjective, since p is surjective. The injectivity of
π0(p) is a consequence of the following claim: If two Rips simplices σ and
τ have intersecting shadows, then σ and τ belong to the same connected
component of R.
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To prove the claim, suppose that p(σ) and p(τ) intersect. By translation,
we can suppose that 0 ∈ p(σ) ∩ p(τ). If {xi} and {yj} respectively denote
the vertices of σ and τ , then

∑

i

λixi = 0 =
∑

j

µjyj

for suitable convex coefficients {λi} and {µj}. Then
∑

i,j

λiµj |xi − yj|2 =
∑

i,j

λiµj |xi|2 − 2
∑

i,j

λiµj(xi · yj) +
∑

i,j

λiµj|yj |2

=
∑

i

λi|xi|2 − 2
∑

i

λixi ·
∑

j

µjyj +
∑

j

µj|yj |2

=
∑

i

λi|xi|2 +
∑

j

µj|yj |2,

and similarly
∑

i,i′

λiλi′ |xi − xi′ |2 = 2
∑

i

λi|xi|2,

∑

j,j′

µjµj′ |yj − yj′|2 = 2
∑

j

µj|yj|2.

Since every edge xixi′ and yjyj′ has length at most 1, the left-hand sides
of these last equations have value at most 1. Thus

∑
i λi|xi|2 ≤ 1/2 and∑

j µj |yj|2 ≤ 1/2. It follows that
∑

i,j λiµj |xi − yj|2 ≤ (1/2)+ (1/2) = 1 and

so at least one edge xiyj has length at most 1.
Thus the simplices σ, τ are connected by an edge, as required. �

Proposition 5.2. For any set of points in E1, the map p : R → S is a homotopy
equivalence.

Proof. Both R and S are homotopy equivalent to finite unions of closed
intervals in E1, and therefore to finite sets of points. This is clear for S . For

R, we note that R1 is equal to the Čech complex C1 in E1. Certainly the two
complexes have the same 1-skeleton. Moreover, Helly’s theorem implies

that Čech complexes are flag completions in 1D: a collection of convex balls
has nonempty intersection if all pairwise intersections are nonempty. Thus
R1 = C1. By the nerve theorem, this complex has the homotopy type of a
union of closed intervals in E1.

Since a 0-connected map between finite point sets is a homotopy equiv-
alence, the same conclusion now holds for the 0-connected map p : R →
S . �

Proposition 5.3. There exists a configuration of points in E2 for which p is not
2-connected.

Proof. Consider the vertices rx1, rx2, rx3, rx4, rx5, rx6 of a regular hexagon

of radius r centered at the origin. If 1/2 < r ≤ 1/
√

3 then only the three
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main diagonals are missing from R. Thus R has the structure of a regular
octahedron, and therefore the homotopy type of a 2-sphere. On the other
hand S is just the hexagon itself (including interior), and is contractible. �

The example of Proposition 5.3 extends to higher homotopy groups by
constructing cross-polytopes, as in [9].

Proposition 5.4. There exists a configuration of points in E4 for which p is not
1-connected.

Proof. Consider the six points

(rx1, εx1), (rx2, 0), (rx3, εx3), (rx4, 0), (rx5, εx5), (rx6, 0)

in E4, in the notation of the previous proposition. Then R has the structure
of a regular octahedron, but the map p : R → S identifies one pair of an-
tipodal points (specifically, the centers of the two large triangles, 135 and
246). Thus R is simply-connected, whereas π1(S) = Z. �

We note that these counterexamples may be embedded in higher dimen-
sions. Moreover, the example in Proposition 5.3 can be perturbed into gen-
eral position without losing its effect, and the example in Proposition 5.4
can be put into general position by the dismal trick of replacing each vertex
with a tiny cluster of vertices.

6. CONCLUSION

The relationship between a Rips complex and its projected shadow is
extremely delicate, as evidenced by the universality result for quasi-Rips
complexes (Theorem 4.1) and the lack of general k-connectivity in Rn (§5).
These results act as a foil to Theorem 3.1: it is by no means a priori evident
that a planar Rips complex should so faithfully capture its shadow.

We close with a few remarks and open questions.

(1) Are the cross-polytopes of Proposition 5.3 the only significant ex-
amples of higher homology in a (planar) Rips complex? If all gen-
erators of the homology Hk(R) for k > 1 could be classified into a
few such ‘local’ types, then, after a local surgery on R to eliminate
higher homology, one could use the Euler characteristic combined
with Theorem 3.1 as a means of quickly computing the number of
holes in the shadow of a planar Rips complex. This method would
have the advantage of being local and thus distributable.

(2) Does the projection map preserve π1 for a Rips complex of points
in R3? Our proofs for the 2-d case rest on some technical lemmas
whose extensions to 3-d would be neither easy to write nor enjoy-
able to read. A more principled approach would be desirable, but
is perhaps not likely given that 1-connectivity on R3 is a borderline
case.
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(3) What are the computational and algorithmic issues associated with
determining the shadow of a (planar) Rips complex? See [6] for re-
cent progress, including algorithms for test contractibility of cycles
in a planar Rips complex and a positive lower bound on the diame-
ter of a hole in the shadow.
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