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Introduction

A zipper folding of a polygon P given a source point
x ∈ ∂P is the polyhedron generated by identifying
all points in ∂P equidistant from x, measured along
the perimeter of P , in essence “zipping” the bound-
ary of the polygon. A theorem of Alexandrov shows
that as long as every glued point has nonnegative cur-
vature, then any zipper folding of a convex polygon
leads to unique convex polyhedron (where a doubly
covered polygon is considered a “flat” polyhedron).
Alexandrov’s theorem is existential, but a more re-
cent constructive proof by Bobenko and Izmestiev al-
lows for the explicit construction of the polyhedron
by solving a certain differential equation [2]. An im-
plementation of the constructive algorithm has been
coded by Stefan Sechelmann1, which will output the
folded convex polyhedron given a input triangulation
of the polygon with gluing instructions. However, it
is difficult to extract the creases and adjacencies from
the initial polygon in their final output polyhedron.
We seek a more combinatorial approach to comput-
ing this information. Previous work has also looked
at determining all the combinatorially different poly-
hedra obtained via foldings, primarily for regular con-
vex polygons as well as a few other shapes such as the
Latin cross [3].

In this paper, we classify and compute the convex
foldings of a diamond shape which are obtained via
zipper foldings. Our primary goal was to seek a sim-
pler combinatorial approach to testing for the correct
set of folds, or crease pattern.

As was observed by Alexandrov and noted in [1],
there are a finite number of possible crease patterns.
However, in our experience, verifying or discounting a
crease pattern has been surprisingly difficult in more
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complex polygons, since checking a crease pattern ei-
ther involves seeing if a paper model will fold (highly
prone to error) or attempting to compute the folding
in a program such as Mathematica (which leads to
numerical issues, among other things).

Our primary result in this work is simply that
there are 21 combinatorially distinct convex polyhe-
dra. (Note that there are 7 polyhedra which have
non-triangular faces and 4 “flat” polyhedra all of
which occur at isolated points where the crease pat-
tern changes). The polyhedra shown in Figure 1 rep-
resent the 10 polyhedra with triangular faces, and the
solid dots represent the 11 isolated polyhedra noted
above. Together, these represent the zipper foldings
of the diamond.

Enumerating the Foldings

Denote the 4 vertices of our polygon as A,B,C,D
and the source and end points (where the zipping
ends) are denoted by S and E respectively, and let
the edges of the diamond be unit length. We suppose
S is contained on the edge AB and let 0 ≤ ε ≤ 1 be
the distance from A to S. Because of the diamond’s
symmetry, we only need to examine the crease pat-
terns for S on the edge AB to determine all foldings.
In our foldings, all polyhedra will have at most 6 ver-
tices, resulting from gluing A, B, C, and D to some
other point on the perimeter, as well as the vertices
S and E, which each glue to themselves. We are in-
terested in the actual adjacencies in the final folded
polyhedron; this network of edges forms an adjacency
graph, often called the graph of the polyhedron.

Our techniques for computing these foldings break
down into several relevant categories. The first (and
simplest) are the flat foldings when the entire poly-
gon folds into a doubly-covered polygon. For exam-
ple, when ε = 0, the vertices B and D zip together
and result in the shape forming a flat doubly covered
regular triangle; flat foldings also occur here when
ε = .5, .75, and 1. The next simplest cases are those
in which the final polyhedron has one or more faces
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Figure 1: All the crease patterns for the zipper foldings of the diamond taken from sample values between
each transition point. Dashed lines indicate that a crease extends over an edge.

that are not triangular. These cases occur for isolated
values of ε within the interval [0, 1], shown as vertices
along our circle in Figure 1.

Within the subintervals of [0, 1] bounded by the
special values of ε described above, the resulting poly-
hedra vary continuously without a change in the ad-
jacency graph, yielding 10 combinatorially different
foldings which “flip” at isolated values where the
polyhedron either folds flat or when two triangular
faces become coplanar. The computation of the ac-
tual polyhedron is handled based on whether the
graph of the polyhedron is 4-regular or not; if not,
in our shape it will always consist of vertices of de-
gree 3,4, and 5. When the graph has at least one
vertex with degree 3, then the polyhedron is substan-
tially easier to realize in R3, computationally speak-
ing. In this shape, this results from the fact that
when we have such a graph, we can decompose the
final polyhedron into three tetrahedra. Our solution
arose by considering the adjacency pattern and iden-
tifying these tetrahedra, then locating the points rel-
ative to each other and determining if the polyhedron
resulting from their identification in R3 was convex.

In folding patterns where all vertices have degree
4, realization of the vertices in R3 is not as simple as
degree 3 case. In [3], the authors describe a method
for constructing an octahedron by splitting it into 2

smaller hexahedra who share an edge that is an in-
ternal diagonal of the octahedron. They vary the
length of this edge until the dihedral angles of the
faces incident to the edge match. We utilize a dif-
ferent method that also reduces a partial polyhedron
to one parameter of change. Computationally speak-
ing, these patterns are more difficult because a single
crease is split into different segments inside the poly-
gon. In order to compute these foldings, we altered
the original polygon to be non-convex and verified
the crease pattern in this related polygon.
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