
CS 473UG: Algorithms, Spring 2006

Midterm 1 Solutions

1. Minimum Spanning Forest with k-edges: For a graph G = (V,E) with each edge e having cost c(e)
(c(e) > 0 for every e), a minimum spanning forest of k-edges is F ⊆ E of k edges (i.e., |F | = k) such
that the graph (V, F) is a forest (i.e., has no cycles) and

∑
e∈F c(e) is minimum. Describe an algorithm

to compute the minimum spanning forest of a graph.

Solution
The algorithm we will use is a modified version of one of the MST algorithms from the book. Sort all
the edges based on their weight. Then iteratively add edges in order of increasing weight as long as
their addition does not create a cycle in the graph. Stop when there are k edges in the graph.

The running time for this algorithm is O(e log n) for the sorting stage, plus O(e log k) since for any
edge we add, we look for cycles in a graph with ≤ k edges. This can be done in O(e log k) by using the
union-find structure to check if two vertices are already in the same component in O(log k) amortized
time.

So the total running time is O(e log n)

To show that this returns the minimum spanning forest, we do a proof by contradiction. Consider
some other minimum spanning forest F ∗ with k edges. Let our spanning forest from the algorithm
above be F . If F and F ∗ have the same components, then they must be the same by the proof of
optimality of the MST algorithm, since we have made an MST on each component.

So suppose F and F ∗ are different in at least one component. Let e be an edge in F ∗ which goes
between two components of F . Consider F ∗ − e, which has one more component than F (since we
removed an edge). Since F has fewer components, there is another edge e′ in F which goes between
two components of F ∗ − e.

Now F ∗ − e + e′ is a forest with k edges. Since our algorithm did not use e, it must be larger than
every edge in F or else we would have added it (since it does not create a cycle in F). Therefore,
w(e) > w(e′), so F ∗ − e + e′ is a smaller forest with k edges, which contradicts F ∗ having minimum
possible weight.

2. Consider the following sorting algorithm

• Divide the array A into
√

n equal sized sub-arrays

• Sort each sub-array recursively

• Merge the sorted sub-arrays

(a) Taking T (n) to be the time taken by the algorithm to sort an array of size n, we get the following
recursive bound on the running time

T (n) =
√

nT (
√

n) + O(n)

Solve the above recurrence to get a bound on the running time. [4 points]
Solution
Use a recursion tree. On level i of the tree, there are n1− 1

2i nodes, each of size Θ(n
1
2i). So there

is Θ(n) “work” done at each level.

Since we are taking the square root each time, there are O(log log n) levels (until n
1
2i = O(1)).

So the bound on this recurrence is O(n log log n).

(b) What is wrong with the analysis in the previous part? [1 point]
Solution
Since we are merging O(

√
n) arrays, we can no longer perform the merge in O(n) time.

1

(c) Give the correct analysis and the correct assymptotic running time. [5 points]
Solution
The correct recurrence is T (n) =

√
nT (

√
n) + O(n3/2), since we must find the minimum of

√
n

things each time we merge one element, and there are n elements to merge.

Then consider the recursion tree. Each level has n1− 1
2i nodes on it. The amount of work at each

node is a bit more complicated. A level 0 node requires O(n3/2) work. A level 1 node requires
(n1/2)3/2 = n3/4 work. A level 2 node requires (n1/4)3/2 = n3/8 work.

In general, a leve i node requires (n
1
2i)

3
2 = n

3
2i+1 work. In general, the number of nodes at level i is

(n
1
2i)

3
2 = n

3
2i+1 . This means that the work done at level i is n

2i−1
2i ·n

3
2i+1 = n

2(2i−1)+3
2i+1 = n

2i+1+1
2i+1 .

At this point, bounding each term by a geometric series will show that the recurrence is dominated
by O(n3/2).
Solving this recurrence turned out to be more difficult than we realized, so we were generous with
partial credit on this one. You also got partial credit if you came up with the wrong recurrence
but solved it correctly.

3. For a set S of points on the real-line, describe an algorithm to find the fewest number of intervals of
size 1 that cover the points in S, i.e., every point in S belongs to some interval chosen by the algorithm.

Solution
Let T be the set of intervals in our solution. We give a greedy solution that repeatedly adds to T the
rightmost interval that covers the leftmost uncovered point in S. In order to implement the algorithm
efficiently, we sort the points before adding any intervals to T .

Sort S from left to right
Let T = {}
While S is nonempty

Let s be the leftmost point in S
Let t be a unit interval with s as its left endpoint
T = T ∪ {t}
While (leftmost point s in S is covered by t)

remove s from S
End While

End While
Return T

It takes Θ(|S| log |S|) time to sort S. Each time through the outer While loop, the inner While loop
runs at least once. The inner While loop runs exactly |S| times. Thus, the total running time for the
inner and outer While loops is Θ(|S|). Let S′ be the set of points that are the left endpoints of the
intervals in T . No two points in S′ can be covered by a single interval. Thus, any solution must contain
at least |S′| = |T | intervals.

4. Given a sorted array A of distinct integers, describe an algorithm that finds i such that A[i] = i, if
such an i exists.

Solution
We will use a binary search to look for the entry 0 in the array B[i] = A[i]− i. First we show that B[i]
is a sorted array. Since A[i] is sorted and consists of distinct integers, we know that A[i+1] ≥ A[i]+1.
Thus, B[i + 1] = A[i + 1]− (i + 1) ≥ A[i]− i = B[i]. The correctness of our algorithm follows directly
from the correctness of binary search and the fact that A[i] = i if and only if B[i] = 0. Note that we
only need to compute an entry of B[i] if the binary search requires us to examine that entry. Thus, we

2

get the following solution, which runs in O(log n) time and uses constant extra space. We assume the
indexing of the array is from 1 to n. (We intialize low to 0 and high to n + 1 since we are maintaining
the invariant that if there exists an i with A[i] = i, then low < i < high.)

low = 0; high = n + 1;
While low < high

mid = b low+high
2 c

If A[mid]−mid < 0
low = mid + 1

Elseif A[mid]−mid > 0
high = mid− 1

Else
print “A[mid] = mid”
break

End While

3

