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I. Partial Derivatives of Functions
Let f : U — R be a real valued function defined in an open neighborhood U of the point a = (a1, ..., a,)
in the n—dimensional Euclidean space R™. For each i = 1,...,n, one defines the i—th partial derivative of f

at a to be the limit o7 A L )~ f(a)
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provided the limit exists.
If the i—th partial derivatives at a of the two real valued functions f and ¢ exist, then so does the
i—partial derivative of their sum and product. In this case the sum and product rules hold:
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Moreover, if g(a) # 0, the i—th partial derivative of the quotient f/g exists and is given by the quotient rule:
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These differentiation formulas are consequences of the corresponding formulas for functions of one
variable because the i—th partial derivative of a function f is the derivative of the one variable function
f(x) = f(a1,...,a;_1,%,ai11,...,a,) obtained by holding all but the i-th coordinate fixed.

Recall that the proofs of the product and quotient rules in the single variable case depend upon the fact
that differentiability implies the continuity of the function at the point. In contrast, the existence of all the
partial derivatives of a function of several variables at a point does not imply the continuity of the function.
For a simple example let f : R? — R be defined by

_JO ifzy=0
f(m,y)—{l if zy # 0.

Clearly, f is discontinuous at (0,0) although %(0,0) = 2—5(0, 0)=0.

II. Differentiability

Let f = (f1,---,fm) : U — R™ be an R™ valued function defined in an open neighborhood U of the
point @ = (aq,...,a,) in the n—dimensional Euclidean space R™. The function f is defined to be differentiable
at a if there exists a linear transformation 7 : R™ — R"™ such that

o (@) = f(0) = T~ )
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where | — | denotes the norms on R™ and R™.}
If f is differentiable at a, then the linear transformation 7" is unique. In fact 7" is given by the formula:

T(v) = }E}% w.
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1 Since all norms on finite dimensional vector spaces are equivalent, the differentiability of a function is

independent of which norm is used.



This unique linear transformation is called the derivative of f at a and is denoted D f(a).? When m = 1, it
may also be called the total derivative or total differential.

It is important to observe that the mapping f is differentiable at a if and only if each of the component
functions f; is differentiable at a. Indeed, if this is the case, D f;(a) is just the projection of D f(a) on the i—th
coordinate of R™. This is proved from the definition by using the norm inequalities |y;| < |y| < > 7%, |yl
for every y = (y1,...,ym) € R™.

Equation (*) shows that if f is differentiable at a then the “directional derivatives”of the component
functions f; of f exist along all lines through the point a. In particular, the partial derivatives of the
component functions f; exist at a, and the m x n-matrix for Df(a) with respect to the standard bases of
Euclidean space takes the form: of
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[Df(a)lij = oz, (a).

This matrix is called the Jacobian matrix of f at a.
The existence of all the partial derivatives gg L (a) is not sufficient for differentiability. What’s more,

J
even the existence of a linear transformation T' satisfying equation (*) is not sufficient for differentiability.

For example, define

0 otherwise

fla,y) = {1 if y = 22 and (z,y) # (0,0)

Then T'(v) = 0 satisfies equation (*) at a = (0,0) for all v € R2. On the other hand f is not continuous at
(0,0), and thus is not differentiable there because:

Differentiability implies continuity. If f is differentiable at a then f is continuous at a.

Proof: We may write f(z) = f(a) + Df(a)(z — a) + ¢(z) where ¢ is a R™—valued function satisfying
\‘i(_wgll = 0. This limit clearly implies that lim,_,, ¢(x) = 0. Because lim,_., Df(a)(z —a) = 0 as

well, we conclude lim,_, f(z) = f(a).
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Ezxamples: If f = T is a linear transformation, then f is differentiable at every point ¢« € R”, and
Df(a) =T because |f(z) — f(a) = T(z — a)| =0 for all z.

Similarly, if f = B : R™ x R™ — R™ is bilinear, then f is differentiable at every point (a,b) €
R™ x R", and Df(a,b)(v,w) = B(a,w)+ B(v,b) for every (v,w) € R™ x R™. This can be proved by first
observing f(z,y) — f(a,b) — B(a,y —b) — B(zx — a,b) = B(z — a,y — b) and next seeing there is a constant C
such that |B(v,w)| < Clv[jw| < C|(v,w)|? for all (v, w) € R™ x R"2. Thus im(y,u)—(0,0) froml = 0 which

[(v,w)]

implies the differentiability of f. ® Similar results hold for multilinear mappings.

The Chain Rule. Let g be differentiable at a, and let f be differentiable at g(a), then the composition
f o g is differentiable at a, and

D(fog)(a) = Df(g(a)) o Dg(a).
Proof: Write
g9(z) = g(a) + Dg(a)(x — a) + ¢(x)
f(y) = f(g(a)) + Df(g(a))(y — g(a)) + ¥ (y)
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2@ — ) and limy, _, ¢(q) Tw=g(ay] = 0- Thus on substituting g(x) for y,

where lim,_,, lo—al

fg(2)) = f(g(a)) + Df(9(a))(Dg(a)(x — a)) + Df(g(a))(d(2)) + ¢ (g(x))-
We need to show (1) lim,_,, m(g‘(;w =0 and (2) lim,_,, @Il — . Because Df(g(a)) is a linear

[z—al

transformation, there is a constant C' such that |Df(g(a))(y)| < C|y| for all y. Consequently,
[Df(9(a))(¢(@)] _ ~1¢(z)]
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2 This is called the Fréchet derivative of f. A weaker notion of differentiability is the Gateau derivative
defined by equation (*).
% In the case m = 1, one may take C' equal to 111y times the largest of the numbers |B(e;, €})| as e; and

’ run through the standard bases elements of R™ and R™ respectively.
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from which limit (1) follows. Given e > 0, there exists a 6 > 0 such that |¢(y)| < €|y — g(a)| whenever
0 < |y — g(a)|] < d. Furthermore, since g is continuous at a, there exists an 7 > 0 such that |g(x) — g(a)| < ¢
whenever |z —a| <n. Thus if 0 < |z —a| <7,

[W(g(x)] < elg(x) — g(a)| < e[ Dg(a)(x — a)| + €e[d(x)].
Therefore, for some constant C’ depending only on the linear transformation Dg(a),

L CIC) [

|t —al — |z —al’

whenever 0 < |z — a| < 7. Since € is arbitrary, limit (2) follows.
The next result applies to all varieties of products, including dot and cross products.

The Omnibus Product Rule. Let B : R™ x R™> — RF be bilinear. Suppose f and g are maps of a
neighborhood of a € R™ into R™, i = 1 and 2 respectively, which are differentiable at a. Then B(f,g) is
differentiable at a and

D(B(f,9))(a) = B(f(a), Dg(a)) + B(Df(a), g(a)).
Proof: Apply the chain rule to the composition of the maps (f,g) and B.
We end this section with:

A sufficient criterion for differentiability. Assume that O/f; by, are defined throughout a neighborhood of
a, and are continuous at a. Then f = (f1,..., fm) Is dszerentzable at a.

Proof: It suffices to consider the case m = 1. Then the mean value theorem implies

f(x) = fla) = fx1,22,...,2n) — flar, T2, ..., xn) + flar, 22, ..., 2n) — fla1, 02,25, ...,&n) + -
4 flag, ..y an—1,2,) — fla1,...,ap)

88;1 (&1, 2, xn) (@1 — ar) + %(a1,£2,$3,...,xn)(x2 —ay) +
~-+%(a1,...,an_1,£n)(xn—an)
where & lies between z; and a;. Set & = (a1, ..., a;—1,&,Tit1,- -, @,). Then
Z@x, —ai)| = é(;{z(é) g;:())(%—az)
< zn:e|xi—a,-|
< e —al

whenever |z — a| < § for 6 > 0 chosen so that |x — a| < ¢ implies that
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for all 4. This completes the proof.

On the other hand the continuity of the partial derivatives is not a necessary requirement for differen-
tiability. For example, 22 sin(1/z) is differentiable at 0, but the derivative is not continuous at 0. One can

make a function of several variables out of this: (22 + y?)sin(1/y/22 +%2). (In both these examples the
function is assumed to have the value 0 at the origin.)



ITI. Higher Derivatives

Let f be a real valued function defined in an open set U C R™. f is said to be C? if f is continuous.
For an integer k > 0, we say f is of differentiability class C*, or simply C¥, if the partial derivatives g—i
are C*~! functions on U for i = 1,...,n. We will let C*¥(U) denote the collection of all C* functions on
U. Using the sum and product rules for partial derivatives and the differentiability criterion, we find by

induction that the C*(U) form a nested decreasing sequence of real algebras
co(U) > CcH(U) > C*(U) > C3(U) - -

under the operations of pointwise addition and multiplication of functions. f is said to be infinitely differ-
entiable, C>, or smooth if f is C* for all k. Thus the collection of C> functions on U is the intersection

C®(U) = N2y CH(U)

which forms a real algebra under pointwise addition and multiplication.
The k—order partials of a function are defined by successive differentiation:

or 9 )
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In general the order of differentiation is important. For example (%ay 76 ayam at (0,0) for the function

ooy = JoysT i (2,y) # (0,0)
f@y) { 0+ if (z,y) = (0,0).

Symmetry of Mixed Partials. If f is C*, then the k—order partial derivatives of f are independent
of the order of differentiation. In particular, for C*° functions, their higher order partial derivatives are
independent of the order of differentiation.

Using induction on k, the proof of the symmetry of mixed partials reduces to showing the following
result in 2 dimensions:

2’ f 9%f ; ’f _ 9°f
Lemma. If 520y and oz are continuous on U, then ooy = ogox On U.

Proof: On one hand, if 3

R contained in U for which %(m, y) > g;gz (z,y) for all (z,y) € R. Thus on integrating over R,

/ / 8x6y / / Oyam

On the other hand, application of Fubini’s theorem with R = [z, xl} [yo,y1] leads to the contradiction

Y1 1 82 Y1
[[ omata= | = [ [ = [ 5
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For an infinitely differentiable function, Taylor’s Theorem takes the following form.

afy (a) > 8228’; (a) at some point a in U, then by continuity there is a rectangle

Taylor’s Formula. If U is an open set in R™ which is star—shaped about the point a, and f is a C'*
real-valued function defined in U then for each k > 0 and x € U

)" Z 8931 Z 633“8% a)(wi, —ai)(Ti, = ai,) +--
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(k n 1)| ‘ Z hi1-~~ik+1(x)(xi1 - a‘il) T (xik-H - a’ik+1)v
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where h;, .. Tory Toir s

insq 18 C and satisfies h;, . i, ., (a) =

Proof: A set U C R" is star—shaped about a € U if for every x € U, the line segment joining a to x is
contained in U. Hence by the Fundamental Theorem of Calculus and the chain rule, if € U, then

f(x)—f(a):/o —f(a—i—t:v—a ))dt = Z/ axza—i—tx—a))( —a;)dt )

which is Taylor’s formula when k = 0 setting h;(z) = 01 382{ (a + t(x — a))dt. (The smoothness of the h;
follow from the theorems about differentiating under the integral sign.) Having established Taylor’s formula
for k, the formula for k + 1 is obtained by replacing the coefficient functions h;, .. 4, ., by their expansions as

in () and symmetrizing the resulting coefficient functions of the monomials of degree k + 2.

We say that a mapping f = (f1,..., fm): U — R™ is C*, if each of the m component functions f; are
C*. Using induction over k, the chain rule shows that the composition of C* mappings are C*. Likewise,
the omnibus product formula shows that “products ”of C* mappings are C*.

Here is an application of Taylor’s formula.

C* mappings are locally Lipschitz. Suppose f: U — R™ is a C*° mapping of the open set U C R",
then for any compact convex subset K C U, there is a constant L, such that

(@) = f(y)| < Lrlz -yl

for all x,y € K.

Proof: Write f = (f1,..., fm) and let M be the maximum of the supremums sup{| gg’: (x)] : x € K}.
Then applying equation (}) to each component function shows that

|fi(z) = fily sii(/{)

Z |z; — y;| < mnM|z -y

dfi
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[f(x) = fy)] <

y+t(m—y)‘ dt) lz; — ;]
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if x,y € K. Therefore Lx = mnM.
IV. Three Theorems About Smooth Mappings.

We state without proof:

The Inverse Function Theorem. Let f be a C°° mapping from an open set U C R"™ into R"™. Suppose
that the derivative D f(a) is an invertible linear transformation at the point a inR™. Then there exists an
open neighborhood V' of a with V' C U such that the restriction f|V is a one to one mapping onto an open
neighborhood W of f(a) such the the inverse mapping f|V = : W — V is C*°. Moreover Df~1(f(a)) =

Df(a)~"

An smooth mapping that has an smooth inverse is called a diffeomorphism. We remark thatif f : V — W
is a diffeomorphism with inverse mapping g : W — V where V. C R™ and W C R™, then m = n since by
the chain rule the derivatives D f(a) and Dg(f(a)) would be inverse linear transformations of each other for
every a € V.

Using this terminology we restate the inverse function theorem: If the derivative a smooth mapping f is
invertible at a point a, then f restricted to a sufficiently small neighborhood of the point a is a diffeomorphism
of that neighborhood onto a neighborhood of the point f(a).
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The Rank Theorem. Let f: U — R™ be a smooth mapping defined on an open set U in R"™. Suppose
that the rank of Df(x) is a constant r for all x in a neighborhood of the point a € U. Then there
exist neighborhoods V' of a and W of f(a), together with diffeomorphisms ¢ : V. — (V) C R", and
Y : W — (W) C R™ such that the mapping

bofod™h i p(V) — (W)

takes the form
vofod  ty,...,ty) = (t1,...,t.,0,...,0).

The Implicit Function Theorem. Let f be a C°° mapping from an open set U C R™ x R™ into R™.
Suppose f(a,b) = 0. Writing the coordinates (z,y) = (X1,...,Tn,Y1,---,Ym) in R™ x R™, assume that the
m X m square matrix

{Wi

dy; (@ b)]

is nonsingular. Then there exists a C* map ¢ : V — R defined in an open neighborhood V of a in R™
such that ¢(a) = b and f(x,$(x)) = 0 for all x in V. The function ¢ is unique in the sense that any two
such functions agree in a neighborhood of a.




