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I. Partial Derivatives of Functions
Let f : U ! R be a real valued function defined in an open neighborhood U of the point a = (a1, . . . , an

)
in the n–dimensional Euclidean space Rn. For each i = 1, . . . , n, one defines the i–th partial derivative of f

at a to be the limit
@f

@x

i

(a) = lim
h!0

f(a1, . . . , ai�1, ai

+ h, a

i+1, . . . , an

)� f(a)
h

,

provided the limit exists.
If the i–th partial derivatives at a of the two real valued functions f and g exist, then so does the

i–partial derivative of their sum and product. In this case the sum and product rules hold:

@(f + g)
@x

i

(a) =
@f

@x

i

(a) +
@g

@x

i

(a)

and
@(fg)
@x

i

(a) =
@f

@x

i

(a)g(a) + f(a)
@g

@x

i

(a).

Moreover, if g(a) 6= 0, the i–th partial derivative of the quotient f/g exists and is given by the quotient rule:

@(f/g)
@x

i

(a) =
@f

@xi
(a)g(a)� f(a) @g

@xi
(a)

g(a)2
.

These di↵erentiation formulas are consequences of the corresponding formulas for functions of one
variable because the i–th partial derivative of a function f is the derivative of the one variable function
f̄(x) = f(a1, . . . , ai�1, x, a

i+1, . . . , an

) obtained by holding all but the i–th coordinate fixed.
Recall that the proofs of the product and quotient rules in the single variable case depend upon the fact

that di↵erentiability implies the continuity of the function at the point. In contrast, the existence of all the
partial derivatives of a function of several variables at a point does not imply the continuity of the function.
For a simple example let f : R2 ! R be defined by

f(x, y) =
⇢

0 if xy = 0
1 if xy 6= 0.

Clearly, f is discontinuous at (0, 0) although @f

@x

(0, 0) = @f

@y

(0, 0) = 0.

II. Di↵erentiability
Let f = (f1, . . . , fm

) : U ! Rm be an Rm valued function defined in an open neighborhood U of the
point a = (a1, . . . , an

) in the n–dimensional Euclidean space Rn. The function f is defined to be di↵erentiable
at a if there exists a linear transformation T : Rn ! Rm such that

lim
x!a

|f(x)� f(a)� T (x� a)|
|x� a| = 0,

where |� | denotes the norms on Rn and Rm.1
If f is di↵erentiable at a, then the linear transformation T is unique. In fact T is given by the formula:

T (v) = lim
t!0

f(a + tv)� f(a)
t

. (⇤)

1 Since all norms on finite dimensional vector spaces are equivalent, the di↵erentiability of a function is
independent of which norm is used.
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This unique linear transformation is called the derivative of f at a and is denoted Df(a).2 When m = 1, it
may also be called the total derivative or total di↵erential.

It is important to observe that the mapping f is di↵erentiable at a if and only if each of the component
functions f

i

is di↵erentiable at a. Indeed, if this is the case, Df

i

(a) is just the projection of Df(a) on the i–th
coordinate of Rm. This is proved from the definition by using the norm inequalities |y

i

|  |y| 
P

m

i=1 |y
i

|
for every y = (y1, . . . , ym

) 2 Rm.
Equation (*) shows that if f is di↵erentiable at a then the “directional derivatives”of the component

functions f

i

of f exist along all lines through the point a. In particular, the partial derivatives of the
component functions f

i

exist at a, and the m ⇥ n–matrix for Df(a) with respect to the standard bases of
Euclidean space takes the form:

[Df(a)]
ij

=
@f

i

@x

j

(a).

This matrix is called the Jacobian matrix of f at a.
The existence of all the partial derivatives @fi

@xj
(a) is not su�cient for di↵erentiability. What’s more,

even the existence of a linear transformation T satisfying equation (*) is not su�cient for di↵erentiability.
For example, define

f(x, y) =
⇢

1 if y = x

2 and (x, y) 6= (0, 0)
0 otherwise

.

Then T (v) = 0 satisfies equation (*) at a = (0, 0) for all v 2 R2. On the other hand f is not continuous at
(0, 0), and thus is not di↵erentiable there because:

Di↵erentiability implies continuity. If f is di↵erentiable at a then f is continuous at a.

Proof: We may write f(x) = f(a) + Df(a)(x � a) + �(x) where � is a Rm–valued function satisfying
lim

x!a

|�(x)|
|x�a| = 0. This limit clearly implies that lim

x!a

�(x) = 0. Because lim
x!a

Df(a)(x � a) = 0 as
well, we conclude lim

x!a

f(x) = f(a).

Examples: If f = T is a linear transformation, then f is di↵erentiable at every point a 2 Rn, and
Df(a) = T because |f(x)� f(a)� T (x� a)| = 0 for all x.

Similarly, if f = B : Rn1 ⇥ Rn2 ! Rm is bilinear, then f is di↵erentiable at every point (a, b) 2
Rn1 ⇥Rn2 , and Df(a, b)(v, w) = B(a, w)+B(v, b) for every (v, w) 2 Rn1 ⇥Rn2 . This can be proved by first
observing f(x, y)� f(a, b)�B(a, y� b)�B(x� a, b) = B(x� a, y� b) and next seeing there is a constant C

such that |B(v, w)|  C|v||w|  C|(v, w)|2 for all (v, w) 2 Rn1 ⇥Rn2 . Thus lim(v,w)!(0,0)
|B(v,w)|
|(v,w)| = 0 which

implies the di↵erentiability of f . 3 Similar results hold for multilinear mappings.

The Chain Rule. Let g be di↵erentiable at a, and let f be di↵erentiable at g(a), then the composition

f � g is di↵erentiable at a, and

D(f � g)(a) = Df(g(a)) �Dg(a).

Proof: Write
g(x) = g(a) + Dg(a)(x� a) + �(x)
f(y) = f(g(a)) + Df(g(a))(y � g(a)) +  (y)

where lim
x!a

|�(x)|
|x�a| = 0 and lim

y!g(a)
| (y)|

|y�g(a)| = 0. Thus on substituting g(x) for y,

f(g(x)) = f(g(a)) + Df(g(a))(Dg(a)(x� a)) + Df(g(a))(�(x)) +  (g(x)).

We need to show (1) lim
x!a

|Df(g(a))(�(x))|
|x�a| = 0 and (2) lim

x!a

| (g(x))|
|x�a| = 0. Because Df(g(a)) is a linear

transformation, there is a constant C such that |Df(g(a))(y)|  C|y| for all y. Consequently,

|Df(g(a))(�(x))|
|x� a|  C

|�(x)|
|x� a|

2 This is called the Fréchet derivative of f . A weaker notion of di↵erentiability is the Gateau derivative
defined by equation (*).

3 In the case m = 1, one may take C equal to n1n2 times the largest of the numbers |B(e
i

, e

0
j

)| as e

i

and
e

0
j

run through the standard bases elements of Rn1 and Rn2 respectively.
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from which limit (1) follows. Given ✏ > 0, there exists a � > 0 such that | (y)| < ✏|y � g(a)| whenever
0 < |y� g(a)| < �. Furthermore, since g is continuous at a, there exists an ⌘ > 0 such that |g(x)� g(a)| < �

whenever |x� a| < ⌘. Thus if 0 < |x� a| < ⌘,

| (g(x)|  ✏|g(x)� g(a)|  ✏|Dg(a)(x� a)| + ✏|�(x)|.

Therefore, for some constant C

0 depending only on the linear transformation Dg(a),

| (g(x))|
|x� a|  ✏C

0 + ✏

|�(x)|
|x� a| ,

whenever 0 < |x� a| < ⌘. Since ✏ is arbitrary, limit (2) follows.

The next result applies to all varieties of products, including dot and cross products.

The Omnibus Product Rule. Let B : Rm1 ⇥Rm2 ! Rk

be bilinear. Suppose f and g are maps of a

neighborhood of a 2 Rn

into Rmi
, i = 1 and 2 respectively, which are di↵erentiable at a. Then B(f, g) is

di↵erentiable at a and

D(B(f, g))(a) = B(f(a), Dg(a)) + B(Df(a), g(a)).

Proof: Apply the chain rule to the composition of the maps (f, g) and B.

We end this section with:

A su�cient criterion for di↵erentiability. Assume that

@fi

@xj
are defined throughout a neighborhood of

a, and are continuous at a. Then f = (f1, . . . , fm

) is di↵erentiable at a.

Proof: It su�ces to consider the case m = 1. Then the mean value theorem implies

f(x)� f(a) = f(x1, x2, . . . , xn

)� f(a1, x2, . . . , xn

) + f(a1, x2, . . . , xn

)� f(a1, a2, x3, . . . , xn

) + · · ·
· · · + f(a1, . . . , an�1, xn

)� f(a1, . . . , an

)

=
@f

@x1
(⇠1, x2, . . . , xn

)(x1 � a1) +
@f

@x2
(a1, ⇠2, x3, . . . , xn

)(x2 � a2) + · · ·

· · · + @f

@x

n

(a1, . . . , an�1, ⇠n)(x
n

� a

n

)

where ⇠
i

lies between x

i

and a

i

. Set ⇠̂
i

= (a1, . . . , ai�1, ⇠i, xi+1, . . . , xn

). Then
�����f(x)� f(a)�

nX

i=1

@f

@x

i

(a)(x
i

� a

i

)

����� =

�����

nX

i=1

✓
@f

@x

i

(⇠̂
i

)� @f

@x

i

(a)
◆

(x
i

� a

i

)

�����


nX

i=1

✏|x
i

� a

i

|

 n✏|x� a|

whenever |x� a| < � for � > 0 chosen so that |x� a| < � implies that
����
@f

@x

i

(x)� @f

@x

i

(a)
���� < ✏

for all i. This completes the proof.

On the other hand the continuity of the partial derivatives is not a necessary requirement for di↵eren-
tiability. For example, x

2 sin(1/x) is di↵erentiable at 0, but the derivative is not continuous at 0. One can
make a function of several variables out of this: (x2 + y

2) sin(1/

p
x

2 + y

2). (In both these examples the
function is assumed to have the value 0 at the origin.)
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III. Higher Derivatives
Let f be a real valued function defined in an open set U ⇢ Rn. f is said to be C

0 if f is continuous.
For an integer k > 0, we say f is of di↵erentiability class C

k, or simply C

k, if the partial derivatives @f

@xi

are C

k�1 functions on U for i = 1, . . . , n. We will let C

k(U) denote the collection of all C

k functions on
U . Using the sum and product rules for partial derivatives and the di↵erentiability criterion, we find by
induction that the C

k(U) form a nested decreasing sequence of real algebras

C

0(U) � C

1(U) � C

2(U) � C

3(U) · · ·

under the operations of pointwise addition and multiplication of functions. f is said to be infinitely di↵er-
entiable, C

1, or smooth if f is C

k for all k. Thus the collection of C

1 functions on U is the intersection

C

1(U) = \1
k=0C

k(U)

which forms a real algebra under pointwise addition and multiplication.
The k–order partials of a function are defined by successive di↵erentiation:

@

k

f

@x

↵k · · · @x

↵1

=
@

@x

↵k

· · · @

@x

↵1

f.

In general the order of di↵erentiation is important. For example @

2
f

@x@y

6= @

2
f

@y@x

at (0, 0) for the function

f(x, y) =
⇢

xy

x

2�y

2

x

2+y

2 if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

Symmetry of Mixed Partials. If f is C

k

, then the k–order partial derivatives of f are independent

of the order of di↵erentiation. In particular, for C

1
functions, their higher order partial derivatives are

independent of the order of di↵erentiation.

Using induction on k, the proof of the symmetry of mixed partials reduces to showing the following
result in 2 dimensions:

Lemma. If

@

2
f

@x@y

and

@

2
f

@y@x

are continuous on U , then

@

2
f

@x@y

= @

2
f

@y@x

on U .

Proof: On one hand, if @

2
f

@x@y

(a) >

@

2
f

@y@x

(a) at some point a in U , then by continuity there is a rectangle

R contained in U for which @

2
f

@x@y

(x, y) >

@

2
f

@y@x

(x, y) for all (x, y) 2 R. Thus on integrating over R,
ZZ

R

@

2
f

@x@y

dA >

ZZ

R

@

2
f

@y@x

dA.

On the other hand, application of Fubini’s theorem with R = [x0, x1]⇥ [y0, y1] leads to the contradiction
ZZ

R

@

2
f

@x@y

dA =
Z

y1

y0

Z
x1

x0

@

2
f

@x@y

dxdy =
Z

x1

x0

Z
y1

y0

@

2
f

@y@x

dydx =
ZZ

R

@

2
f

@y@x

dA.

For an infinitely di↵erentiable function, Taylor’s Theorem takes the following form.

Taylor’s Formula. If U is an open set in Rn

which is star–shaped about the point a, and f is a C

1

real–valued function defined in U then for each k � 0 and x 2 U

f(x) = f(a) +
nX

i=1

@f

@x

i

(a)(x
i

� a

i

) +
1
2!

nX

i1,i2=1

@

2
f

@x

i1@x

i2

(a)(x
i1 � a

i1)(xi2 � a

i2) + · · ·

· · · + 1
k!

nX

i1,...,ik=1

@

k

f

@x

i1 · · · @x

ik

(a)(x
i1 � a

i1) · · · (xik � a

ik)+

1
(k + 1)!

nX

i1,...,ik+1=1

h

i1...ik+1(x)(x
i1 � a

i1) · · · (xik+1 � a

ik+1),
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where h

i1...ik+1 is C

1
and satisfies h

i1...ik+1(a) = @

k+1
f

@xi1 ···@xik+1
(a).

Proof: A set U ⇢ Rn is star–shaped about a 2 U if for every x 2 U , the line segment joining a to x is
contained in U . Hence by the Fundamental Theorem of Calculus and the chain rule, if x 2 U , then

f(x)� f(a) =
Z 1

0

d
dt

f(a + t(x� a)) dt =
nX

i=1

Z 1

0

@f

@x

i

(a + t(x� a))(x
i

� a

i

) dt (†)

which is Taylor’s formula when k = 0 setting h

i

(x) =
R 1
0

@f

@xi
(a + t(x � a)) dt. (The smoothness of the h

i

follow from the theorems about di↵erentiating under the integral sign.) Having established Taylor’s formula
for k, the formula for k + 1 is obtained by replacing the coe�cient functions h

i1...ik+1 by their expansions as
in (†) and symmetrizing the resulting coe�cient functions of the monomials of degree k + 2.

We say that a mapping f = (f1, . . . , fm

) : U ! Rm is C

k, if each of the m component functions f

i

are
C

k. Using induction over k, the chain rule shows that the composition of C

k mappings are C

k. Likewise,
the omnibus product formula shows that “products ”of C

k mappings are C

k.
Here is an application of Taylor’s formula.

C

1 mappings are locally Lipschitz. Suppose f : U ! Rm

is a C

1
mapping of the open set U ⇢ Rn

,

then for any compact convex subset K ⇢ U , there is a constant L

K

, such that

|f(x)� f(y)|  L

K

|x� y|

for all x, y 2 K.

Proof: Write f = (f1, . . . , fm

) and let M be the maximum of the supremums sup{| @fi

@xj
(x)| : x 2 K}.

Then applying equation (†) to each component function shows that

|f(x)� f(y)| 
mX

i=1

|f
i

(x)� f

i

(y)| 
mX

i=1

nX

j=1

✓Z 1

0

����
@f

i

@x

j

(y + t(x� y)
���� dt

◆
|x

j

� y

j

|


mX

i=1

nX

j=1

M |x
j

� y

j

|  mnM |x� y|

if x, y 2 K. Therefore L

K

= mnM .

IV. Three Theorems About Smooth Mappings.

We state without proof:

The Inverse Function Theorem. Let f be a C

1
mapping from an open set U ⇢ Rn

into Rn

. Suppose

that the derivative Df(a) is an invertible linear transformation at the point a inRn

. Then there exists an

open neighborhood V of a with V ⇢ U such that the restriction f |V is a one to one mapping onto an open

neighborhood W of f(a) such the the inverse mapping f |V �1 : W ! V is C

1
. Moreover Df

�1(f(a)) =
Df(a)�1

.

An smooth mapping that has an smooth inverse is called a di↵eomorphism. We remark that if f : V ! W

is a di↵eomorphism with inverse mapping g : W ! V where V ⇢ Rn and W ⇢ Rm, then m = n since by
the chain rule the derivatives Df(a) and Dg(f(a)) would be inverse linear transformations of each other for
every a 2 V .

Using this terminology we restate the inverse function theorem: If the derivative a smooth mapping f is
invertible at a point a, then f restricted to a su�ciently small neighborhood of the point a is a di↵eomorphism
of that neighborhood onto a neighborhood of the point f(a).
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The Rank Theorem. Let f : U ! Rm

be a smooth mapping defined on an open set U in Rn

. Suppose

that the rank of Df(x) is a constant r for all x in a neighborhood of the point a 2 U . Then there

exist neighborhoods V of a and W of f(a), together with di↵eomorphisms � : V ! �(V ) ⇢ Rn

, and

 : W !  (W ) ⇢ Rm

such that the mapping

 � f � ��1 : �(V ) !  (W )

takes the form

 � f � ��1(t1, . . . , tn) = (t1, . . . , tr, 0, . . . , 0).

The Implicit Function Theorem. Let f be a C

1
mapping from an open set U ⇢ Rn ⇥Rm

into Rm

.

Suppose f(a, b) = 0. Writing the coordinates (x, y) = (x1, . . . , xn

, y1, . . . , ym

) in Rn ⇥Rm

, assume that the

m⇥m square matrix 
@f

i

@y

j

(a, b)
�

is nonsingular. Then there exists a C

1
map � : V ! Rm

defined in an open neighborhood V of a in Rn

such that �(a) = b and f(x,�(x)) = 0 for all x in V . The function � is unique in the sense that any two

such functions agree in a neighborhood of a.
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